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What physical constraint limits speed today?
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What physical constraint limits speed today?

Energy Power  4
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(An aside on the relationship between 
computational performance and power)
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(4 GPUs)

x (250 Watts / GPU)

x (1 week)

~ 0.6 billion Joules
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hpcgarage.org/uccsJetson	TK1 Jetson	TX1
CPU ARM	A15	

(32-bit, 2.3	GHz,	4+1	cores)
ARM	A57	

(64-bit,	1.9	GHz,	4	cores)

GPU 192	core	Kepler,	326	GF/s	(peak) 256	core	Maxwell,	1	TF/s

Memory 2	GB	LPDDR3 4	GB	LPDDR4

Storage 16	GB	eMMC 16	GB eMMC

Networking Ethernet 802.11ac	/	BT

Form	Factor Dev	board Module	with	400	pin	connector

I/O USB,	HDMI,	Serial Provided	separately

Release	Date 2014 2015
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or “cap”, from a 
user or the system

 11

http://hpcgarage.org/uccs


hpcgarage.org/uccs

Limit 
or “cap”, from a 
user or the system

 12

http://hpcgarage.org/uccs


hpcgarage.org/uccs

Limit 
or “cap”, from a 
user or the system

 13

http://hpcgarage.org/uccs


hpcgarage.org/uccs

Limit 
or “cap”, from a 
user or the system

Slow down?
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Main question of this talk: 

Can you design an algorithm in a way

that you can control its power?


We are interested in “algorithmic” methods that complement techniques available in 
hardware, like DVFS, and systems software or middleware.
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A first principle: 

Relationships among time, energy, and power.

 16
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Time ~ ? 

Energy ~ ? 

Power = Energy / Time

 17

http://hpcgarage.org/uccs


hpcgarage.org/uccs

Time ~ (# of operations) / (number of processors) 

Energy ~ (# of operations) 

Power = Energy / Time ~ (number of processors) = Speedup
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Time ~ (# of operations) / (number of processors) 

Energy ~ (# of operations) 

Power = Energy / Time ~ (number of processors) = Speedup

Conclusion:

To save time & energy: Must reduce work (# ops or cost/op) 
To save power: Must slow down (e.g., use fewer cores)
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Time ~ (# of operations) / (number of processors) 

Energy ~ (# of operations) 

Power = Energy / Time ~ (number of processors) = Speedup

Conclusion:

To save time & energy: Must reduce work (# ops or cost/op) 
To save power: Must slow down (e.g., use fewer cores)
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Main question of this talk: 

Can you design an algorithm in a way

that you can control its power?


We are interested in “algorithmic” methods that complement techniques available in 
hardware, like DVFS, and systems software or middleware.
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Main ideas of this talk: 

1. Performance understanding can drive transformation(s). 

Case study a) Branch-avoidance

Yes! 
Example: A power-tunable graph algorithm to compute

single-source shortest paths (SSSP).
Sara Karamati (Ph.D. student), Dr. Jeff Young (research faculty), R. Vuduc — new, unpublished work
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* Based on GunRock implementations of Davidson, Baxter, Garland, and Owens (IPDPS’14) 
** Delling et al. “PHAST: Hardware-accelerated shortest path trees” (JPDC’10)

๏ Baseline: Fastest, work-efficient 
“delta-stepping-like” method* 
๏ Tunable work-parallelism tradeoff 

๏ Tuned for a GPU and run on an 
NVIDIA Jetson TK1, which has 
tunable core frequencies (10x) and 
memory frequencies (3x) 

๏ No preprocessing shortcuts, a la PHAST**

Jetson	TK1 Jetson	TX1
CPU ARM	A15	

(32-bit, 2.3	GHz,	4+1	cores)
ARM	A57	

(64-bit,	1.9	GHz,	4	cores)

GPU 192	core	Kepler,	326	GF/s	(peak) 256	core	Maxwell,	1	TF/s

Memory 2	GB	LPDDR3 4	GB	LPDDR4

Storage 16	GB	eMMC 16	GB eMMC

Networking Ethernet 802.11ac	/	BT

Form	Factor Dev	board Module	with	400	pin	connector

I/O USB,	HDMI,	Serial Provided	separately

Release	Date 2014 2015
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Observation: 

Delta (𝛅) is a tuning parameter that can 
be used to control power-time tradeoffs.


But how to choose it? It is input-dependent. And, in the literature, it is always treated 
as a fixed a priori parameter with little guidance on its ideal value.
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Sara’s insight: 

Treat 𝛅 as a parameter to be

learned and controlled,

dynamically.
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Intermediate frontier (queue) sizes
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X2(k) ~ (degree) * X1(k)

Try to estimate 
(“learn”) 

 42
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Supercomputing 2017, November 2017, Denver, Colorado USA
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Figure 5: Performance, Average, and Peak Power for Varied Delta

Figure 6: A dynamically adaptive (or “tunable”) near+far al-
gorithm

4.2 A�������M����
Recall that in iteration k the advance stage visits all neighbors of
nodes in the frontier, the size of which is X (1)

k . Intuitively, the ex-
pected amount of parallelism during advance would be the average
node degree times the frontier size; therefore, letting X̂ (2)

k denote

an estimate of X (2)
k , we might posit a model for X̂ (2)

k of the form,

X̂ (2)
k = d · X (1)

k , (1)

where d speci�es how the cardinality of the output of the advance
stage scales with the input frontier size X (1)

k . In other words, the

model parameter d becomes an estimate of the average degree of
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We use the online method of stochastic gradient descent to update
d after observing the true values of X (1)

k and X (2)
k in each iteration

k [24]. The precise updates are given by Algorithm 1.
In our experiments, the algorithm described above can converge

to an acceptable value of d after about 10 iterations. However, an
improper parameter estimation (as would occur before the algo-
rithm converges) can make the algorithm unstable during initial
iterations. To reduce overshoots and undershoots in our estimates
of d before algorithm stabilizes, we add a log barrier penalty to the
cost function eq. (2), which regularizes the algorithm’s behavior
in the initial iterations [4]. Therefore, we use the following cost
function during the initial stage of the algorithm (i.e., initial 10
iterations):

min
d
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X (2)
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This form penalizes smaller values of d , which would otherwise
cause our predicted values for X (1)

k+1 (see below) to become unrea-
sonably large. Here, � is a parameter that can be used to generalize
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Figure 6: A dynamically adaptive (or “tunable”) near+far al-
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In our experiments, the algorithm described above can converge

to an acceptable value of d after about 10 iterations. However, an
improper parameter estimation (as would occur before the algo-
rithm converges) can make the algorithm unstable during initial
iterations. To reduce overshoots and undershoots in our estimates
of d before algorithm stabilizes, we add a log barrier penalty to the
cost function eq. (2), which regularizes the algorithm’s behavior
in the initial iterations [4]. Therefore, we use the following cost
function during the initial stage of the algorithm (i.e., initial 10
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k of the form,
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We use the online method of stochastic gradient descent to update
d after observing the true values of X (1)

k and X (2)
k in each iteration

k [24]. The precise updates are given by Algorithm 1.
In our experiments, the algorithm described above can converge

to an acceptable value of d after about 10 iterations. However, an
improper parameter estimation (as would occur before the algo-
rithm converges) can make the algorithm unstable during initial
iterations. To reduce overshoots and undershoots in our estimates
of d before algorithm stabilizes, we add a log barrier penalty to the
cost function eq. (2), which regularizes the algorithm’s behavior
in the initial iterations [4]. Therefore, we use the following cost
function during the initial stage of the algorithm (i.e., initial 10
iterations):

min
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Recall that in iteration k the advance stage visits all neighbors of
nodes in the frontier, the size of which is X (1)
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We use the online method of stochastic gradient descent to update
d after observing the true values of X (1)

k and X (2)
k in each iteration

k [24]. The precise updates are given by Algorithm 1.
In our experiments, the algorithm described above can converge

to an acceptable value of d after about 10 iterations. However, an
improper parameter estimation (as would occur before the algo-
rithm converges) can make the algorithm unstable during initial
iterations. To reduce overshoots and undershoots in our estimates
of d before algorithm stabilizes, we add a log barrier penalty to the
cost function eq. (2), which regularizes the algorithm’s behavior
in the initial iterations [4]. Therefore, we use the following cost
function during the initial stage of the algorithm (i.e., initial 10
iterations):

min
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✓
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This form penalizes smaller values of d , which would otherwise
cause our predicted values for X (1)
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Recall that in iteration k the advance stage visits all neighbors of
nodes in the frontier, the size of which is X (1)

k . Intuitively, the ex-
pected amount of parallelism during advance would be the average
node degree times the frontier size; therefore, letting X̂ (2)

k denote

an estimate of X (2)
k , we might posit a model for X̂ (2)

k of the form,
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where d speci�es how the cardinality of the output of the advance
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k . In other words, the
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We use the online method of stochastic gradient descent to update
d after observing the true values of X (1)

k and X (2)
k in each iteration

k [24]. The precise updates are given by Algorithm 1.
In our experiments, the algorithm described above can converge

to an acceptable value of d after about 10 iterations. However, an
improper parameter estimation (as would occur before the algo-
rithm converges) can make the algorithm unstable during initial
iterations. To reduce overshoots and undershoots in our estimates
of d before algorithm stabilizes, we add a log barrier penalty to the
cost function eq. (2), which regularizes the algorithm’s behavior
in the initial iterations [4]. Therefore, we use the following cost
function during the initial stage of the algorithm (i.e., initial 10
iterations):

min
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This form penalizes smaller values of d , which would otherwise
cause our predicted values for X (1)

k+1 (see below) to become unrea-
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Recall that in iteration k the advance stage visits all neighbors of
nodes in the frontier, the size of which is X (1)

k . Intuitively, the ex-
pected amount of parallelism during advance would be the average
node degree times the frontier size; therefore, letting X̂ (2)

k denote

an estimate of X (2)
k , we might posit a model for X̂ (2)

k of the form,

X̂ (2)
k = d · X (1)

k , (1)

where d speci�es how the cardinality of the output of the advance
stage scales with the input frontier size X (1)

k . In other words, the

model parameter d becomes an estimate of the average degree of
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We use the online method of stochastic gradient descent to update
d after observing the true values of X (1)

k and X (2)
k in each iteration

k [24]. The precise updates are given by Algorithm 1.
In our experiments, the algorithm described above can converge

to an acceptable value of d after about 10 iterations. However, an
improper parameter estimation (as would occur before the algo-
rithm converges) can make the algorithm unstable during initial
iterations. To reduce overshoots and undershoots in our estimates
of d before algorithm stabilizes, we add a log barrier penalty to the
cost function eq. (2), which regularizes the algorithm’s behavior
in the initial iterations [4]. Therefore, we use the following cost
function during the initial stage of the algorithm (i.e., initial 10
iterations):

min
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This form penalizes smaller values of d , which would otherwise
cause our predicted values for X (1)

k+1 (see below) to become unrea-
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Recall that in iteration k the advance stage visits all neighbors of
nodes in the frontier, the size of which is X (1)

k . Intuitively, the ex-
pected amount of parallelism during advance would be the average
node degree times the frontier size; therefore, letting X̂ (2)

k denote

an estimate of X (2)
k , we might posit a model for X̂ (2)

k of the form,
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k , (1)

where d speci�es how the cardinality of the output of the advance
stage scales with the input frontier size X (1)

k . In other words, the

model parameter d becomes an estimate of the average degree of
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We use the online method of stochastic gradient descent to update
d after observing the true values of X (1)

k and X (2)
k in each iteration

k [24]. The precise updates are given by Algorithm 1.
In our experiments, the algorithm described above can converge

to an acceptable value of d after about 10 iterations. However, an
improper parameter estimation (as would occur before the algo-
rithm converges) can make the algorithm unstable during initial
iterations. To reduce overshoots and undershoots in our estimates
of d before algorithm stabilizes, we add a log barrier penalty to the
cost function eq. (2), which regularizes the algorithm’s behavior
in the initial iterations [4]. Therefore, we use the following cost
function during the initial stage of the algorithm (i.e., initial 10
iterations):

min
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Recall that in iteration k the advance stage visits all neighbors of
nodes in the frontier, the size of which is X (1)
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k denote

an estimate of X (2)
k , we might posit a model for X̂ (2)

k of the form,
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k , (1)

where d speci�es how the cardinality of the output of the advance
stage scales with the input frontier size X (1)

k . In other words, the

model parameter d becomes an estimate of the average degree of
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We use the online method of stochastic gradient descent to update
d after observing the true values of X (1)

k and X (2)
k in each iteration

k [24]. The precise updates are given by Algorithm 1.
In our experiments, the algorithm described above can converge

to an acceptable value of d after about 10 iterations. However, an
improper parameter estimation (as would occur before the algo-
rithm converges) can make the algorithm unstable during initial
iterations. To reduce overshoots and undershoots in our estimates
of d before algorithm stabilizes, we add a log barrier penalty to the
cost function eq. (2), which regularizes the algorithm’s behavior
in the initial iterations [4]. Therefore, we use the following cost
function during the initial stage of the algorithm (i.e., initial 10
iterations):
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Recall that in iteration k the advance stage visits all neighbors of
nodes in the frontier, the size of which is X (1)

k . Intuitively, the ex-
pected amount of parallelism during advance would be the average
node degree times the frontier size; therefore, letting X̂ (2)

k denote

an estimate of X (2)
k , we might posit a model for X̂ (2)

k of the form,

X̂ (2)
k = d · X (1)

k , (1)

where d speci�es how the cardinality of the output of the advance
stage scales with the input frontier size X (1)

k . In other words, the

model parameter d becomes an estimate of the average degree of
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We use the online method of stochastic gradient descent to update
d after observing the true values of X (1)

k and X (2)
k in each iteration

k [24]. The precise updates are given by Algorithm 1.
In our experiments, the algorithm described above can converge

to an acceptable value of d after about 10 iterations. However, an
improper parameter estimation (as would occur before the algo-
rithm converges) can make the algorithm unstable during initial
iterations. To reduce overshoots and undershoots in our estimates
of d before algorithm stabilizes, we add a log barrier penalty to the
cost function eq. (2), which regularizes the algorithm’s behavior
in the initial iterations [4]. Therefore, we use the following cost
function during the initial stage of the algorithm (i.e., initial 10
iterations):

min
d

X

k

✓
X (2)
k � d · X

(1)
k

◆2
� � lnd (3)

This form penalizes smaller values of d , which would otherwise
cause our predicted values for X (1)

k+1 (see below) to become unrea-
sonably large. Here, � is a parameter that can be used to generalize

Loss 
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Algorithm 1 Stochastic gradient descent with an adaptive learning
rate [24]. Initially, when k = 0, this algorithm takes X (1)

0 = 1 for
the initial source vertex, � = 2, and � = h = � = 0.

1: Od = �2
✓
X (2)
k � d · X (1)

k

◆
X (1)
k

2: O2
d = 2

✓
X (1)
k

◆2

3: �  
⇣
1 � ��1

⌘
· � + ��1 · Od

4: �  
⇣
1 � ��1

⌘
· � + ��1 · (Od )

2

5: h  
⇣
1 � ��1

⌘
· h + ��1 · O2

d

6: µ  (�)2

h ·�
7: �  

✓
1 � (�)2

�

◆
· � + 1

8: d  d � µOd

our cost function. During the initial iterations, it can be a set to a
non-zero value and then clamped to zero in subsequent iterations
it can be clamped to zero, e�ectively removing the barrier function.
In relation to the update formulas of Algorithm 1, the �rst and
second derivative formulas (lines 1 and 2) get additional ��/d and
�/d2 terms, respectively.

4.3 Constraining parallelism
Recall from §3 that the available parallelism in the next iteration,
k + 1, will be at most X (2)

k+1. Thus, we would like X (2)
k+1  P , the

target parallelism set-point. From the A�������M����, we can
thus estimate that it would be desirable to have an input frontier
size of

X̂ (1)
k+1 

P

d
. (4)

This target constraint on the input frontier size becomes the goal
for the B������M����.

4.4 B������M����
The B������M���� is the estimator associated with the rebalancer
stage. This stage consumes the frontier, of size X (4)

k , and may move
vertices from the far queue to the frontier if it is determined that
the delta-value needs to change. The updated frontier becomes the
input to the next iteration, and its size will be X (1)

k+1.
Suppose we determine that a change of size ��k to the current

delta-value is necessary. A value of ��k = 0 means no change is
necessary, so that the updated frontier of size X (4)

k is exactly the

size of the input frontier in the next iteration, X (1)
k+1. Otherwise, we

estimate X (1)
k+1 by a linear model of the form,

X̂ (1)
k+1 = X (4)

k + � · ��k , (5)

where X̂ (1)
k+1 denotes the estimate ofX (1)

k+1 and � is a parameter to be
learned. Similar to the A�������M����, we formulate the problem
of choosing � as one of minimizing the deviation between X̂ (1)

k+1

and X (1)
k+1:

min
�

X

k

✓
X (1)
k+1 � X̂

(1)
k+1

◆2
= min

�

X

k

✓
X (1)
k+1 � X

(4)
k + � · ��k

◆2
.

(6)
For brevity, we omit the update formulas but they are exactly anal-
ogous to Algorithm 1 with derivatives taken with respect to � .

4.5 Updating the delta-value
Given d and � , the new �k+1 at iteration k + 1 may be derived by
combining eq. (4) and eq. (5):

�k+1  �k +
X̂ (1)
k+1 � X

(4)
k

�
= �k +

P
d � X

(4)
k

�
. (7)

4.6 Rebalancing
To control the parallelism imposed by the size of far queue, our
controller recursively partitions the far queue, based on the vertex
distance from the source, to keep the size of each partition below
the parallelism set-point P . This is accomplished by periodically
updating partition boundaries. Once these boundaries are updated,
in each iteration, the bisect-frontier and rebalancer stages place
each new vertex into partition i if Bi�1 < d  Bi , where d , Bi�1,
and Bi are vertex distance, lower bound of partition i , and upper
bound of partition i , respectively. Note that the upper bound of
partition i � 1 is always equal to the lower bound of partition i; that
is, both are equal to Bi�1.

The far queue partitioning algorithm starts with single parti-
tion with its lower and upper bounds initialized to 0 and MAX_INT,
respectively. In each iteration, if the size of a partition is greater
than P , then the upper bound of the partition is updated. If the
updated upper bound belongs to the last partition, a new partition
with its upper bound equal to MAX_INT is appended to the sequence
of existing partitions. Critically, updates to the boundaries only
impact the subsequent iterations. However, to preserve the algo-
rithm’s correctness, we have to impose monotonic boundary shifts.
In other words, the updates to boundaries will always decrease their
value. Accordingly, the following modi�cations are made to bisect-
frontier and and bisect-far-queue stages: in bisect-frontier, when
the algorithm adds vertices to the far queue, a vertex is assigned to
a partition based on its distance d . In bisect-far-queue, instead of
searching all vertices to �nd ones with the desired distance, only
the partitions with the desired boundaries are searched.

The method for selecting boundaries is similar to the model used
to �nd the optimal � in Sec. 4.4. The B������M���� in eq. (5) for-
mulates the relation between ��k and the number of vertices with
their distance in the range [�k ,�k+1]. Here, the desired number of
vertices in the range dictated by partition boundaries is P , and with
the lower bound anchored to the upper bound of the previous par-
tition, we need to update the upper bound for the current partition.
Therefore, the update formula is:

Bi  Bi�1 +
P

�
. (8)
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Algorithm 1 Stochastic gradient descent with an adaptive learning
rate [24]. Initially, when k = 0, this algorithm takes X (1)

0 = 1 for
the initial source vertex, � = 2, and � = h = � = 0.

1: Od = �2
✓
X (2)
k � d · X (1)

k

◆
X (1)
k

2: O2
d = 2

✓
X (1)
k

◆2

3: �  
⇣
1 � ��1

⌘
· � + ��1 · Od

4: �  
⇣
1 � ��1

⌘
· � + ��1 · (Od )

2

5: h  
⇣
1 � ��1

⌘
· h + ��1 · O2

d

6: µ  (�)2

h ·�
7: �  

✓
1 � (�)2

�

◆
· � + 1

8: d  d � µOd

our cost function. During the initial iterations, it can be a set to a
non-zero value and then clamped to zero in subsequent iterations
it can be clamped to zero, e�ectively removing the barrier function.
In relation to the update formulas of Algorithm 1, the �rst and
second derivative formulas (lines 1 and 2) get additional ��/d and
�/d2 terms, respectively.

4.3 Constraining parallelism
Recall from §3 that the available parallelism in the next iteration,
k + 1, will be at most X (2)

k+1. Thus, we would like X (2)
k+1  P , the

target parallelism set-point. From the A�������M����, we can
thus estimate that it would be desirable to have an input frontier
size of

X̂ (1)
k+1  

P

d
. (4)

This target constraint on the input frontier size becomes the goal
for the B������M����.

4.4 B������M����
The B������M���� is the estimator associated with the rebalancer
stage. This stage consumes the frontier, of size X (4)

k , and may move
vertices from the far queue to the frontier if it is determined that
the delta-value needs to change. The updated frontier becomes the
input to the next iteration, and its size will be X (1)

k+1.
Suppose we determine that a change of size ��k to the current

delta-value is necessary. A value of ��k = 0 means no change is
necessary, so that the updated frontier of size X (4)

k is exactly the

size of the input frontier in the next iteration, X (1)
k+1. Otherwise, we

estimate X (1)
k+1 by a linear model of the form,

X̂ (1)
k+1 = X (4)

k + � · ��k , (5)

where X̂ (1)
k+1 denotes the estimate ofX (1)

k+1 and � is a parameter to be
learned. Similar to the A�������M����, we formulate the problem
of choosing � as one of minimizing the deviation between X̂ (1)

k+1

and X (1)
k+1:

min
�

X

k

✓
X (1)
k+1 � X̂

(1)
k+1

◆2
= min

�

X

k

✓
X (1)
k+1 � X

(4)
k + � · ��k

◆2
.

(6)
For brevity, we omit the update formulas but they are exactly anal-
ogous to Algorithm 1 with derivatives taken with respect to � .

4.5 Updating the delta-value
Given d and � , the new �k+1 at iteration k + 1 may be derived by
combining eq. (4) and eq. (5):

�k+1  �k +
X̂ (1)
k+1 � X

(4)
k

�
= �k +

P
d � X

(4)
k

�
. (7)

4.6 Rebalancing
To control the parallelism imposed by the size of far queue, our
controller recursively partitions the far queue, based on the vertex
distance from the source, to keep the size of each partition below
the parallelism set-point P . This is accomplished by periodically
updating partition boundaries. Once these boundaries are updated,
in each iteration, the bisect-frontier and rebalancer stages place
each new vertex into partition i if Bi�1 < d  Bi , where d , Bi�1,
and Bi are vertex distance, lower bound of partition i , and upper
bound of partition i , respectively. Note that the upper bound of
partition i � 1 is always equal to the lower bound of partition i; that
is, both are equal to Bi�1.

The far queue partitioning algorithm starts with single parti-
tion with its lower and upper bounds initialized to 0 and MAX_INT,
respectively. In each iteration, if the size of a partition is greater
than P , then the upper bound of the partition is updated. If the
updated upper bound belongs to the last partition, a new partition
with its upper bound equal to MAX_INT is appended to the sequence
of existing partitions. Critically, updates to the boundaries only
impact the subsequent iterations. However, to preserve the algo-
rithm’s correctness, we have to impose monotonic boundary shifts.
In other words, the updates to boundaries will always decrease their
value. Accordingly, the following modi�cations are made to bisect-
frontier and and bisect-far-queue stages: in bisect-frontier, when
the algorithm adds vertices to the far queue, a vertex is assigned to
a partition based on its distance d . In bisect-far-queue, instead of
searching all vertices to �nd ones with the desired distance, only
the partitions with the desired boundaries are searched.

The method for selecting boundaries is similar to the model used
to �nd the optimal � in Sec. 4.4. The B������M���� in eq. (5) for-
mulates the relation between ��k and the number of vertices with
their distance in the range [�k ,�k+1]. Here, the desired number of
vertices in the range dictated by partition boundaries is P , and with
the lower bound anchored to the upper bound of the previous par-
tition, we need to update the upper bound for the current partition.
Therefore, the update formula is:

Bi  Bi�1 +
P

�
. (8)
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Algorithm 1 Stochastic gradient descent with an adaptive learning
rate [24]. Initially, when k = 0, this algorithm takes X (1)

0 = 1 for
the initial source vertex, � = 2, and � = h = � = 0.

1: Od = �2
✓
X (2)
k � d · X (1)

k

◆
X (1)
k

2: O2
d = 2

✓
X (1)
k

◆2

3: �  
⇣
1 � ��1

⌘
· � + ��1 · Od

4: �  
⇣
1 � ��1

⌘
· � + ��1 · (Od )

2

5: h  
⇣
1 � ��1

⌘
· h + ��1 · O2

d

6: µ  (�)2

h ·�
7: �  

✓
1 � (�)2

�

◆
· � + 1

8: d  d � µOd

our cost function. During the initial iterations, it can be a set to a
non-zero value and then clamped to zero in subsequent iterations
it can be clamped to zero, e�ectively removing the barrier function.
In relation to the update formulas of Algorithm 1, the �rst and
second derivative formulas (lines 1 and 2) get additional ��/d and
�/d2 terms, respectively.

4.3 Constraining parallelism
Recall from §3 that the available parallelism in the next iteration,
k + 1, will be at most X (2)

k+1. Thus, we would like X (2)
k+1  P , the

target parallelism set-point. From the A�������M����, we can
thus estimate that it would be desirable to have an input frontier
size of

X̂ (1)
k+1  

P

d
. (4)

This target constraint on the input frontier size becomes the goal
for the B������M����.

4.4 B������M����
The B������M���� is the estimator associated with the rebalancer
stage. This stage consumes the frontier, of size X (4)

k , and may move
vertices from the far queue to the frontier if it is determined that
the delta-value needs to change. The updated frontier becomes the
input to the next iteration, and its size will be X (1)

k+1.
Suppose we determine that a change of size ��k to the current

delta-value is necessary. A value of ��k = 0 means no change is
necessary, so that the updated frontier of size X (4)

k is exactly the

size of the input frontier in the next iteration, X (1)
k+1. Otherwise, we

estimate X (1)
k+1 by a linear model of the form,

X̂ (1)
k+1 = X (4)

k + � · ��k , (5)

where X̂ (1)
k+1 denotes the estimate ofX (1)

k+1 and � is a parameter to be
learned. Similar to the A�������M����, we formulate the problem
of choosing � as one of minimizing the deviation between X̂ (1)

k+1

and X (1)
k+1:

min
�

X

k

✓
X (1)
k+1 � X̂

(1)
k+1

◆2
= min

�

X

k

✓
X (1)
k+1 � X

(4)
k + � · ��k

◆2
.

(6)
For brevity, we omit the update formulas but they are exactly anal-
ogous to Algorithm 1 with derivatives taken with respect to � .

4.5 Updating the delta-value
Given d and � , the new �k+1 at iteration k + 1 may be derived by
combining eq. (4) and eq. (5):

�k+1  �k +
X̂ (1)
k+1 � X

(4)
k

�
= �k +

P
d � X

(4)
k

�
. (7)

4.6 Rebalancing
To control the parallelism imposed by the size of far queue, our
controller recursively partitions the far queue, based on the vertex
distance from the source, to keep the size of each partition below
the parallelism set-point P . This is accomplished by periodically
updating partition boundaries. Once these boundaries are updated,
in each iteration, the bisect-frontier and rebalancer stages place
each new vertex into partition i if Bi�1 < d  Bi , where d , Bi�1,
and Bi are vertex distance, lower bound of partition i , and upper
bound of partition i , respectively. Note that the upper bound of
partition i � 1 is always equal to the lower bound of partition i; that
is, both are equal to Bi�1.

The far queue partitioning algorithm starts with single parti-
tion with its lower and upper bounds initialized to 0 and MAX_INT,
respectively. In each iteration, if the size of a partition is greater
than P , then the upper bound of the partition is updated. If the
updated upper bound belongs to the last partition, a new partition
with its upper bound equal to MAX_INT is appended to the sequence
of existing partitions. Critically, updates to the boundaries only
impact the subsequent iterations. However, to preserve the algo-
rithm’s correctness, we have to impose monotonic boundary shifts.
In other words, the updates to boundaries will always decrease their
value. Accordingly, the following modi�cations are made to bisect-
frontier and and bisect-far-queue stages: in bisect-frontier, when
the algorithm adds vertices to the far queue, a vertex is assigned to
a partition based on its distance d . In bisect-far-queue, instead of
searching all vertices to �nd ones with the desired distance, only
the partitions with the desired boundaries are searched.

The method for selecting boundaries is similar to the model used
to �nd the optimal � in Sec. 4.4. The B������M���� in eq. (5) for-
mulates the relation between ��k and the number of vertices with
their distance in the range [�k ,�k+1]. Here, the desired number of
vertices in the range dictated by partition boundaries is P , and with
the lower bound anchored to the upper bound of the previous par-
tition, we need to update the upper bound for the current partition.
Therefore, the update formula is:

Bi  Bi�1 +
P

�
. (8)

Estimator
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Algorithm 1 Stochastic gradient descent with an adaptive learning
rate [24]. Initially, when k = 0, this algorithm takes X (1)

0 = 1 for
the initial source vertex, � = 2, and � = h = � = 0.

1: Od = �2
✓
X (2)
k � d · X (1)

k

◆
X (1)
k

2: O2
d = 2

✓
X (1)
k

◆2

3: �  
⇣
1 � ��1

⌘
· � + ��1 · Od

4: �  
⇣
1 � ��1

⌘
· � + ��1 · (Od )

2

5: h  
⇣
1 � ��1

⌘
· h + ��1 · O2

d

6: µ  (�)2

h ·�
7: �  

✓
1 � (�)2

�

◆
· � + 1

8: d  d � µOd

our cost function. During the initial iterations, it can be a set to a
non-zero value and then clamped to zero in subsequent iterations
it can be clamped to zero, e�ectively removing the barrier function.
In relation to the update formulas of Algorithm 1, the �rst and
second derivative formulas (lines 1 and 2) get additional ��/d and
�/d2 terms, respectively.

4.3 Constraining parallelism
Recall from §3 that the available parallelism in the next iteration,
k + 1, will be at most X (2)

k+1. Thus, we would like X (2)
k+1  P , the

target parallelism set-point. From the A�������M����, we can
thus estimate that it would be desirable to have an input frontier
size of

X̂ (1)
k+1  

P

d
. (4)

This target constraint on the input frontier size becomes the goal
for the B������M����.

4.4 B������M����
The B������M���� is the estimator associated with the rebalancer
stage. This stage consumes the frontier, of size X (4)

k , and may move
vertices from the far queue to the frontier if it is determined that
the delta-value needs to change. The updated frontier becomes the
input to the next iteration, and its size will be X (1)

k+1.
Suppose we determine that a change of size ��k to the current

delta-value is necessary. A value of ��k = 0 means no change is
necessary, so that the updated frontier of size X (4)

k is exactly the

size of the input frontier in the next iteration, X (1)
k+1. Otherwise, we

estimate X (1)
k+1 by a linear model of the form,

X̂ (1)
k+1 = X (4)

k + � · ��k , (5)

where X̂ (1)
k+1 denotes the estimate ofX (1)

k+1 and � is a parameter to be
learned. Similar to the A�������M����, we formulate the problem
of choosing � as one of minimizing the deviation between X̂ (1)

k+1

and X (1)
k+1:

min
�

X

k

✓
X (1)
k+1 � X̂

(1)
k+1

◆2
= min

�

X

k

✓
X (1)
k+1 � X

(4)
k + � · ��k

◆2
.

(6)
For brevity, we omit the update formulas but they are exactly anal-
ogous to Algorithm 1 with derivatives taken with respect to � .

4.5 Updating the delta-value
Given d and � , the new �k+1 at iteration k + 1 may be derived by
combining eq. (4) and eq. (5):

�k+1  �k +
X̂ (1)
k+1 � X

(4)
k

�
= �k +

P
d � X

(4)
k

�
. (7)

4.6 Rebalancing
To control the parallelism imposed by the size of far queue, our
controller recursively partitions the far queue, based on the vertex
distance from the source, to keep the size of each partition below
the parallelism set-point P . This is accomplished by periodically
updating partition boundaries. Once these boundaries are updated,
in each iteration, the bisect-frontier and rebalancer stages place
each new vertex into partition i if Bi�1 < d  Bi , where d , Bi�1,
and Bi are vertex distance, lower bound of partition i , and upper
bound of partition i , respectively. Note that the upper bound of
partition i � 1 is always equal to the lower bound of partition i; that
is, both are equal to Bi�1.

The far queue partitioning algorithm starts with single parti-
tion with its lower and upper bounds initialized to 0 and MAX_INT,
respectively. In each iteration, if the size of a partition is greater
than P , then the upper bound of the partition is updated. If the
updated upper bound belongs to the last partition, a new partition
with its upper bound equal to MAX_INT is appended to the sequence
of existing partitions. Critically, updates to the boundaries only
impact the subsequent iterations. However, to preserve the algo-
rithm’s correctness, we have to impose monotonic boundary shifts.
In other words, the updates to boundaries will always decrease their
value. Accordingly, the following modi�cations are made to bisect-
frontier and and bisect-far-queue stages: in bisect-frontier, when
the algorithm adds vertices to the far queue, a vertex is assigned to
a partition based on its distance d . In bisect-far-queue, instead of
searching all vertices to �nd ones with the desired distance, only
the partitions with the desired boundaries are searched.

The method for selecting boundaries is similar to the model used
to �nd the optimal � in Sec. 4.4. The B������M���� in eq. (5) for-
mulates the relation between ��k and the number of vertices with
their distance in the range [�k ,�k+1]. Here, the desired number of
vertices in the range dictated by partition boundaries is P , and with
the lower bound anchored to the upper bound of the previous par-
tition, we need to update the upper bound for the current partition.
Therefore, the update formula is:

Bi  Bi�1 +
P

�
. (8)

Estimator
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Cool feature: 

User sets P, the max parallelism, not 𝛅!


The controller chooses the hard-to-set 𝛅 fully automatically, adjusting it as frequently 
as every iteration. Not discussed: One can prove that the controller is bounded-input 
bounded-output (BIBO) stable, meaning frontier sizes will be “well-behaved.”
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Next question: 

Does it work? 

(Experimental results)
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Baseline Near+Far: 
Parallelism is highly irregular, 
average parallelism is low 
(scale-free input) 
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Baseline Near+Far: 
Parallelism is highly irregular, 
average parallelism is low 
(scale-free input) 
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Pmax



Self-tuning controller: 
Parallelism is more regular and 
average parallelism is higher 
(scale-free input) 
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Self-tuning controller: 
Parallelism is more regular and 
average parallelism is higher 
(scale-free input) 
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Pmax



Baseline Near+Far: 
Low average parallelism 
⇒ many iterations 
(scale-free input) 
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Next question: 

Can it save power or

improve performance?


Compare against the baseline with a fixed 𝛅 and 
hardware-based dynamic frequency scaling.
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Upper-left quadrant: 
Speedup + less power 
= Energy savings! 
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Self-tuning controller: solid lines 
Can save energy! 
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But even when it can’t

save energy, it trades

time for power gracefully.

(Shown here: scale-free network)
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Limitation 1 (open-question): 

Choosing P is not the same as asking for 
max power, which was our motivation.


There are limits on dynamic power measurement, which is needed to provide 
feedback to this scheme. But it would likely be easy to incorporate because of the 
model-based approach.
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Limitation 2 (observational): 

Power and energy savings are not big.

We observed ~ 40% speedups and ~ 15% reductions in maximum power 
consumption over hardware-only DFS. These savings cannot be bigger because the 
system baseline or “constant” power is high — it is upwards of 50% or more of 
maximum power, so the amount of dynamically controllable power is small.
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Conclusions: 

The “dynamic SSSP” algorithm improves on near+far, even 
when ignoring power. It’s easier to choose P than 𝛅, making this 
SSSP easier to use.


The control-based scheme can be applied to any algorithm that 
is a “sequence of (filter) banks” (e.g., others in Gunrock), though 
the models may need specialization.


Energy savings are possible, especially when combined with 
hardware-only techniques like DFS.
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