
hpcgarage.org/uccs

A power-tunable algorithm to compute
single-source shortest paths
Sara Karamati · Jeffrey Young · Richard (Rich) Vuduc

November 17, 2017 — University of Colorado at Colorado Springs

 1

http://hpcgarage.org/uccs

hpcgarage.org/memsys16

http://www.amazon.com/Connection-Machine-Artificial-Intelligence/dp/0262580977/ref=sr_1_1?ie=UTF8&qid=1319571691&sr=8-1
http://www.technologyreview.com/files/1158/1106_Q-A.tif.jpg

ACM Doctoral Dissertation Award Winner (1985)

http://hpcgarage.org/memsys16
http://www.amazon.com/Connection-Machine-Artificial-Intelligence/dp/0262580977/ref=sr_1_1?ie=UTF8&qid=1319571691&sr=8-1
http://www.amazon.com/Connection-Machine-Artificial-Intelligence/dp/0262580977/ref=sr_1_1?ie=UTF8&qid=1319571691&sr=8-1

hpcgarage.org/memsys16

http://www.amazon.com/Connection-Machine-Artificial-Intelligence/dp/0262580977/ref=sr_1_1?ie=UTF8&qid=1319571691&sr=8-1
http://www.technologyreview.com/files/1158/1106_Q-A.tif.jpg

ACM Doctoral Dissertation Award Winner (1985)

http://hpcgarage.org/memsys16
http://www.amazon.com/Connection-Machine-Artificial-Intelligence/dp/0262580977/ref=sr_1_1?ie=UTF8&qid=1319571691&sr=8-1
http://www.amazon.com/Connection-Machine-Artificial-Intelligence/dp/0262580977/ref=sr_1_1?ie=UTF8&qid=1319571691&sr=8-1

hpcgarage.org/uccs

What physical constraint limits speed today?

 3

http://hpcgarage.org/uccs

hpcgarage.org/uccs

What physical constraint limits speed today?

Energy Power 4

http://hpcgarage.org/uccs

hpcgarage.org/uccs

(An aside on the relationship between
computational performance and power)

 5

http://hpcgarage.org/uccs

 6

(4 GPUs)

x (250 Watts / GPU)

x (1 week)

~ 0.6 billion Joules

 7

(4 GPUs)

x (250 Watts / GPU)

x (1 week)

~ 0.6 billion Joules

(1 brain)

x (20 Watts / brain)

x (1 year)

~ 0.6 billion Joules 7

(4 GPUs)

x (250 Watts / GPU)

x (1 week)

~ 0.6 billion Joules

(1 brain)

x (20 Watts / brain)

x (1 year)

~ 0.6 billion Joules

??

 7

hpcgarage.org/uccs

 8

http://hpcgarage.org/uccs

hpcgarage.org/uccsJetson	TK1 Jetson	TX1
CPU ARM	A15	

(32-bit, 2.3	GHz,	4+1	cores)
ARM	A57	

(64-bit,	1.9	GHz,	4	cores)

GPU 192	core	Kepler,	326	GF/s	(peak) 256	core	Maxwell,	1	TF/s

Memory 2	GB	LPDDR3 4	GB	LPDDR4

Storage 16	GB	eMMC 16	GB eMMC

Networking Ethernet 802.11ac	/	BT

Form	Factor Dev	board Module	with	400	pin	connector

I/O USB,	HDMI,	Serial Provided	separately

Release	Date 2014 2015

 9

http://hpcgarage.org/uccs

hpcgarage.org/uccs

 10

http://hpcgarage.org/uccs

hpcgarage.org/uccs

Limit
or “cap”, from a
user or the system

 11

http://hpcgarage.org/uccs

hpcgarage.org/uccs

Limit
or “cap”, from a
user or the system

 12

http://hpcgarage.org/uccs

hpcgarage.org/uccs

Limit
or “cap”, from a
user or the system

 13

http://hpcgarage.org/uccs

hpcgarage.org/uccs

Limit
or “cap”, from a
user or the system

Slow down?
 14

http://hpcgarage.org/uccs

hpcgarage.org/uccs

Main question of this talk:

Can you design an algorithm in a way

that you can control its power?

We are interested in “algorithmic” methods that complement techniques available in
hardware, like DVFS, and systems software or middleware.

 15

http://hpcgarage.org/uccs

hpcgarage.org/uccs

A first principle: 

Relationships among time, energy, and power.

 16

J. Choi, D. Bedard, R. Fowler, R. Vuduc. “A roofline model of energy.” In IPDPS’13.
J. Choi, M. Dukhan, X. Liu, R. Vuduc. “Algorithmic time, energy, and power on candidate HPC building blocks.” In

IPDPS’14.

http://hpcgarage.org/uccs

hpcgarage.org/uccs

Time ~ ?

Energy ~ ?

Power = Energy / Time

 17

http://hpcgarage.org/uccs

hpcgarage.org/uccs

Time ~ (# of operations) / (number of processors)

Energy ~ (# of operations)

Power = Energy / Time ~ (number of processors) = Speedup

 18

http://hpcgarage.org/uccs

hpcgarage.org/uccs

Time ~ (# of operations) / (number of processors)

Energy ~ (# of operations)

Power = Energy / Time ~ (number of processors) = Speedup

 19

http://hpcgarage.org/uccs

hpcgarage.org/uccs

Time ~ (# of operations) / (number of processors)

Energy ~ (# of operations)

Power = Energy / Time ~ (number of processors) = Speedup

 20

http://hpcgarage.org/uccs

hpcgarage.org/uccs

Time ~ (# of operations) / (number of processors)

Energy ~ (# of operations)

Power = Energy / Time ~ (number of processors) = Speedup

 21

http://hpcgarage.org/uccs

hpcgarage.org/uccs

Time ~ (# of operations) / (number of processors)

Energy ~ (# of operations)

Power = Energy / Time ~ (number of processors) = Speedup

Conclusion:

To save time & energy: Must reduce work (# ops or cost/op)
To save power: Must slow down (e.g., use fewer cores)

 22

http://hpcgarage.org/uccs

hpcgarage.org/uccs

Time ~ (# of operations) / (number of processors)

Energy ~ (# of operations)

Power = Energy / Time ~ (number of processors) = Speedup

Conclusion:

To save time & energy: Must reduce work (# ops or cost/op)
To save power: Must slow down (e.g., use fewer cores)

 23

http://hpcgarage.org/uccs

Flickr RoadBay

●

●●
●
●

●

●
●

●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●●●●

●

●●
●●

●●

●

●●●●

●

●●●
●

●●

●

●●●●

●

●●●
●

●●

●

●

●
●

●

●
●

●
●
●

●

●
●

●
●

●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

0

5

10

15

20

0 50 100 150 0 50 100 150
sec

Joules

Execution energy is proportional to time (SSSP+GPU example)

 24

hpcgarage.org/uccs

Time ~ (# of operations) / (number of processors)

Energy ~ (# of operations)

Power = Energy / Time ~ (number of processors) = Speedup

Conclusion:

To save time & energy: Must reduce work (# ops or cost/op)
To save power: Must slow down (e.g., use fewer cores)

 25

http://hpcgarage.org/uccs

hpcgarage.org/uccs

Flickr RoadBay

●

●●●●

●
●●
●●

●

●

●

●●●●

●
●●
●●

●

●

●

●

●
●
●

●

●
●

●
●

●

●

●

●

● ●
●

●

●●

●

●

●

●

●

●
● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●●

●

●●
●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

● ●

● ●

●
●

●

●

●
●

●

●

●

●

●

●

●

0

10

20

30

1.0 1.2 1.4 1.6 1.8 1.0 1.2 1.4 1.6 1.8
Relative power

Sp
ee

du
p

Speedup increases with additional power (SSSP+GPU example)

 26

http://hpcgarage.org/uccs

hpcgarage.org/uccs

Main question of this talk:

Can you design an algorithm in a way

that you can control its power?

We are interested in “algorithmic” methods that complement techniques available in
hardware, like DVFS, and systems software or middleware.

 27

http://hpcgarage.org/uccs

hpcgarage.org/uccs

Main ideas of this talk:

1. Performance understanding can drive transformation(s).

Case study a) Branch-avoidance

Yes!
Example: A power-tunable graph algorithm to compute

single-source shortest paths (SSSP).
Sara Karamati (Ph.D. student), Dr. Jeff Young (research faculty), R. Vuduc — new, unpublished work

 28

http://hpcgarage.org/uccs

hpcgarage.org/uccs

* Based on GunRock implementations of Davidson, Baxter, Garland, and Owens (IPDPS’14)
** Delling et al. “PHAST: Hardware-accelerated shortest path trees” (JPDC’10)

๏ Baseline: Fastest, work-efficient 
“delta-stepping-like” method*
๏ Tunable work-parallelism tradeoff

๏ Tuned for a GPU and run on an
NVIDIA Jetson TK1, which has
tunable core frequencies (10x) and
memory frequencies (3x)

๏ No preprocessing shortcuts, a la PHAST**

Jetson	TK1 Jetson	TX1
CPU ARM	A15	

(32-bit, 2.3	GHz,	4+1	cores)
ARM	A57	

(64-bit,	1.9	GHz,	4	cores)

GPU 192	core	Kepler,	326	GF/s	(peak) 256	core	Maxwell,	1	TF/s

Memory 2	GB	LPDDR3 4	GB	LPDDR4

Storage 16	GB	eMMC 16	GB eMMC

Networking Ethernet 802.11ac	/	BT

Form	Factor Dev	board Module	with	400	pin	connector

I/O USB,	HDMI,	Serial Provided	separately

Release	Date 2014 2015

 29

http://hpcgarage.org/uccs

hpcgarage.org/uccs

V2

V5

V6

V4

V3

50

34

7

5

V1

40

S

10

1

Baseline: Gunrock’s “Near+Far” algorithm

 30

http://hpcgarage.org/uccs

hpcgarage.org/uccs

V2

V5

V6

V4

V3

50

34

7

5

V1

40

S

10

1

Baseline: Gunrock’s “Near+Far” algorithm

 30

http://hpcgarage.org/uccs

hpcgarage.org/uccs

V2

V5

V6

V4

V3

50

34

7

5

V1

40

S

10

1

Baseline: Gunrock’s “Near+Far” algorithm

 30

http://hpcgarage.org/uccs

hpcgarage.org/uccs

V2

V5

V6

V4

V3

50

34

7

5

V1

40

S

10

1

Baseline: Gunrock’s “Near+Far” algorithm

 30

http://hpcgarage.org/uccs

hpcgarage.org/uccs

V2

V5

V6

V4

V3

50

34

7

5

V1

40

S

10

1

Baseline: Gunrock’s “Near+Far” algorithm

 30

http://hpcgarage.org/uccs

hpcgarage.org/uccs

V2

V5

V6

V4

V3

50

34

7

5

Frontier

V1

40

S

Frontier

Advance Filter

Frontier

V3	
V4	
V5	
V6	
V6

V1	
V2

V3,	d=6	<	20	
V4,	d=8	<	20	
V5,	d=35	>	20	
V6,	d=51	>	20

10

1

Bisect V3	
V4

V5	
V6

N
ear	Pile	=	Frontier	

Far	PileSplitting	Distance	=	20

One	Iteration

Baseline: Gunrock’s “Near+Far” algorithm

 31

http://hpcgarage.org/uccs

hpcgarage.org/uccs

V2

V5

V6

V4

V3

50

34

7

5

Frontier

V1

40

S

Frontier

Advance Filter

Frontier

V3	
V4	
V5	
V6	
V6

V1	
V2

V3,	d=6	<	20	
V4,	d=8	<	20	
V5,	d=35	>	20	
V6,	d=51	>	20

10

1

Bisect V3	
V4

V5	
V6

N
ear	Pile	=	Frontier	

Far	PileSplitting	Distance	=	20

One	Iteration

Baseline: Gunrock’s “Near+Far” algorithm

 31

http://hpcgarage.org/uccs

hpcgarage.org/uccs

V2

V5

V6

V4

V3

50

34

7

5

Frontier

V1

40

S

Frontier

Advance Filter

Frontier

V3	
V4	
V5	
V6	
V6

V1	
V2

V3,	d=6	<	20	
V4,	d=8	<	20	
V5,	d=35	>	20	
V6,	d=51	>	20

10

1

Bisect V3	
V4

V5	
V6

N
ear	Pile	=	Frontier	

Far	PileSplitting	Distance	=	20

One	Iteration

Baseline: Gunrock’s “Near+Far” algorithm

|Frontier| ~ parallelism
 31

http://hpcgarage.org/uccs

hpcgarage.org/uccs

V2

V5

V6

V4

V3

50

34

7

5

Frontier

V1

40

S

Frontier

Advance Filter

Frontier

V3	
V4	
V5	
V6	
V6

V1	
V2

V3,	d=6	<	20	
V4,	d=8	<	20	
V5,	d=35	>	20	
V6,	d=51	>	20

10

1

Bisect V3	
V4

V5	
V6

N
ear	Pile	=	Frontier	

Far	PileSplitting	Distance	=	20

One	Iteration

Baseline: Gunrock’s “Near+Far” algorithm

 31

http://hpcgarage.org/uccs

hpcgarage.org/uccs

V2

V5

V6

V4

V3

50

34

7

5

Frontier

V1

40

S

Frontier

Advance Filter

Frontier

V3	
V4	
V5	
V6	
V6

V1	
V2

V3,	d=6	<	20	
V4,	d=8	<	20	
V5,	d=35	>	20	
V6,	d=51	>	20

10

1

Bisect V3	
V4

V5	
V6

N
ear	Pile	=	Frontier	

Far	PileSplitting	Distance	=	20

One	Iteration

Baseline: Gunrock’s “Near+Far” algorithm

 31

http://hpcgarage.org/uccs

hpcgarage.org/uccs

V2

V5

V6

V4

V3

50

34

7

5

Frontier

V1

40

S

Frontier

Advance Filter

Frontier

V3	
V4	
V5	
V6	
V6

V1	
V2

V3,	d=6	<	20	
V4,	d=8	<	20	
V5,	d=35	>	20	
V6,	d=51	>	20

10

1

Bisect V3	
V4

V5	
V6

N
ear	Pile	=	Frontier	

Far	PileSplitting	Distance	=	20

One	Iteration

Baseline: Gunrock’s “Near+Far” algorithm

delta: 𝛅

 31

http://hpcgarage.org/uccs

hpcgarage.org/uccs

V2

V5

V6

V4

V3

50

34

7

5

Frontier

V1

40

S

Frontier

Advance Filter

Frontier

V3	
V4	
V5	
V6	
V6

V1	
V2

V3,	d=6	<	20	
V4,	d=8	<	20	
V5,	d=35	>	20	
V6,	d=51	>	20

10

1

Bisect V3	
V4

V5	
V6

N
ear	Pile	=	Frontier	

Far	PileSplitting	Distance	=	20

One	Iteration

Baseline: Gunrock’s “Near+Far” algorithm

delta: 𝛅

 31

http://hpcgarage.org/uccs

hpcgarage.org/uccs

V2

V5

V6

V4

V3

50

34

7

5

Frontier

V1

40

S

Frontier

Advance Filter

Frontier

V3	
V4	
V5	
V6	
V6

V1	
V2

V3,	d=6	<	20	
V4,	d=8	<	20	
V5,	d=35	>	20	
V6,	d=51	>	20

10

1

Bisect V3	
V4

V5	
V6

N
ear	Pile	=	Frontier	

Far	PileSplitting	Distance	=	20

One	Iteration

Baseline: Gunrock’s “Near+Far” algorithm

delta: 𝛅

 31

http://hpcgarage.org/uccs

hpcgarage.org/uccs

V2

V5

V6

V4

V3

50

34

7

5

Frontier

V1

40

S

Frontier

Advance Filter

Frontier

V3	
V4	
V5	
V6	
V6

V1	
V2

V3,	d=6	<	20	
V4,	d=8	<	20	
V5,	d=35	>	20	
V6,	d=51	>	20

10

1

Bisect V3	
V4

V5	
V6

N
ear	Pile	=	Frontier	

Far	PileSplitting	Distance	=	20

One	Iteration

Baseline: Gunrock’s “Near+Far” algorithm

delta: 𝛅

 31

http://hpcgarage.org/uccs

hpcgarage.org/uccs

V2

V5

V6

V4

V3

50

34

7

5

Frontier

V1

40

S

Frontier

Advance Filter

Frontier

V3	
V4	
V5	
V6	
V6

V1	
V2

V3,	d=6	<	20	
V4,	d=8	<	20	
V5,	d=35	>	20	
V6,	d=51	>	20

10

1

Bisect V3	
V4

V5	
V6

N
ear	Pile	=	Frontier	

Far	PileSplitting	Distance	=	20

Baseline: Gunrock’s “Near+Far” algorithm

delta: 𝛅

 31

http://hpcgarage.org/uccs

hpcgarage.org/uccs

V2

V5

V6

V4

V3

50

34

7

5

Frontier

V1

40

S

Frontier

Advance Filter

Frontier

V3	
V4	
V5	
V6	
V6

V1	
V2

V3,	d=6	<	20	
V4,	d=8	<	20	
V5,	d=35	>	20	
V6,	d=51	>	20

10

1

Bisect V3	
V4

V5	
V6

N
ear	Pile	=	Frontier	

Far	PileSplitting	Distance	=	20

One	Iteration

Baseline: Gunrock’s “Near+Far” algorithm

delta: 𝛅

Power ~ Parallelism ~ Queue sizes 32

http://hpcgarage.org/uccs

hpcgarage.org/uccs

V2

V5

V6

V4

V3

50

34

7

5

Frontier

V1

40

S

Frontier

Advance Filter

Frontier

V3	
V4	
V5	
V6	
V6

V1	
V2

V3,	d=6	<	20	
V4,	d=8	<	20	
V5,	d=35	>	20	
V6,	d=51	>	20

10

1

Bisect V3	
V4

V5	
V6

N
ear	Pile	=	Frontier	

Far	PileSplitting	Distance	=	20

One	Iteration

Baseline: Gunrock’s “Near+Far” algorithm

delta: 𝛅

Power ~ Parallelism ~ Queue sizes 32

http://hpcgarage.org/uccs

hpcgarage.org/uccsWhat is the effect of delta (𝛅)?

 33

http://hpcgarage.org/uccs

hpcgarage.org/uccsWhat is the effect of delta (𝛅)?

(road network)

 34

http://hpcgarage.org/uccs

hpcgarage.org/uccsWhat is the effect of delta (𝛅)?

 35

http://hpcgarage.org/uccs

hpcgarage.org/uccs

10 50 100 250 500
Delta (#104)

0

2

4

6
Ti

m
e

(#
10

4)

10 50 100 250 500
Delta (#104)

8

10

12

14

Av
er

ag
e

Po
w

er

10 50 100 250 500
Delta (#104)

10

12

14

16

M
ax

im
um

 P
ow

er

Time

Mean power

Max power

delta: 𝛅

(road network)

 36

http://hpcgarage.org/uccs

hpcgarage.org/uccs

5 10 20 40 60 80
Delta

0

5

10
Ti

m
e

(#
 1

03)

5 10 20 40 60 80
Delta

10.5

11

11.5

12

Av
er

ag
e

Po
w

er

5 10 20 40 60 80
Delta

14.8

14.9

15

15.1

15.2

M
ax

im
um

 P
ow

er

Time

Mean power

Max power

(scale-free)

 37

http://hpcgarage.org/uccs

hpcgarage.org/uccs

Observation:

Delta (𝛅) is a tuning parameter that can
be used to control power-time tradeoffs.

But how to choose it? It is input-dependent. And, in the literature, it is always treated
as a fixed a priori parameter with little guidance on its ideal value.

 38

http://hpcgarage.org/uccs

hpcgarage.org/uccs

Sara’s insight:

Treat 𝛅 as a parameter to be

learned and controlled,

dynamically.

 39

http://hpcgarage.org/uccs

hpcgarage.org/uccsRecall: Near+Far == stages.

 40

http://hpcgarage.org/uccs

hpcgarage.org/uccsRecall: Near+Far == stages.

Intermediate frontier (queue) sizes

 40

http://hpcgarage.org/uccs

hpcgarage.org/uccsAdd a controller!

 41

http://hpcgarage.org/uccs

hpcgarage.org/uccsSimple models between stages…

X2(k) ~ (degree) * X1(k)

Try to estimate
(“learn”)

 42

http://hpcgarage.org/uccs

hpcgarage.org/uccs

Supercomputing 2017, November 2017, Denver, Colorado USA

10 50 100 250 500
Delta (#104)

0

2

4

6

Ti
m

e
(#

10
4)

10 50 100 250 500
Delta (#104)

8

10

12

14

Av
er

ag
e

Po
w

er

10 50 100 250 500
Delta (#104)

10

12

14

16

M
ax

im
um

 P
ow

er

(a) Cal (road network)

5 10 20 40 60 80
Delta

0

5

10

Ti
m

e
(#

 1
03)

5 10 20 40 60 80
Delta

10.5

11

11.5

12

Av
er

ag
e

Po
w

er

5 10 20 40 60 80
Delta

14.8

14.9

15

15.1

15.2

M
ax

im
um

 P
ow

er

(b) wikipedia-20051105 (scale-free network)

Figure 5: Performance, Average, and Peak Power for Varied Delta

Figure 6: A dynamically adaptive (or “tunable”) near+far al-
gorithm

4.2 A�������M����
Recall that in iteration k the advance stage visits all neighbors of
nodes in the frontier, the size of which is X (1)

k . Intuitively, the ex-
pected amount of parallelism during advance would be the average
node degree times the frontier size; therefore, letting X̂ (2)

k denote

an estimate of X (2)
k , we might posit a model for X̂ (2)

k of the form,

X̂ (2)
k = d · X (1)

k , (1)

where d speci�es how the cardinality of the output of the advance
stage scales with the input frontier size X (1)

k . In other words, the

model parameter d becomes an estimate of the average degree of
nodes in the frontier.

We seek a value for d that minimizes the deviation of X̂ (2)
k from

X (2)
k by some measure, such as the sum of squared errors,

min
d

X

k

✓
X (2)
k � X̂

(2)
k

◆2
= min

d

X

k

✓
X (2)
k � d · X

(1)
k

◆2
. (2)

We use the online method of stochastic gradient descent to update
d after observing the true values of X (1)

k and X (2)
k in each iteration

k [24]. The precise updates are given by Algorithm 1.
In our experiments, the algorithm described above can converge

to an acceptable value of d after about 10 iterations. However, an
improper parameter estimation (as would occur before the algo-
rithm converges) can make the algorithm unstable during initial
iterations. To reduce overshoots and undershoots in our estimates
of d before algorithm stabilizes, we add a log barrier penalty to the
cost function eq. (2), which regularizes the algorithm’s behavior
in the initial iterations [4]. Therefore, we use the following cost
function during the initial stage of the algorithm (i.e., initial 10
iterations):

min
d

X

k

✓
X (2)
k � d · X

(1)
k

◆2
� � lnd (3)

This form penalizes smaller values of d , which would otherwise
cause our predicted values for X (1)

k+1 (see below) to become unrea-
sonably large. Here, � is a parameter that can be used to generalize

 43

http://hpcgarage.org/uccs

hpcgarage.org/uccs

Supercomputing 2017, November 2017, Denver, Colorado USA

10 50 100 250 500
Delta (#104)

0

2

4

6

Ti
m

e
(#

10
4)

10 50 100 250 500
Delta (#104)

8

10

12

14

Av
er

ag
e

Po
w

er

10 50 100 250 500
Delta (#104)

10

12

14

16

M
ax

im
um

 P
ow

er

(a) Cal (road network)

5 10 20 40 60 80
Delta

0

5

10

Ti
m

e
(#

 1
03)

5 10 20 40 60 80
Delta

10.5

11

11.5

12

Av
er

ag
e

Po
w

er

5 10 20 40 60 80
Delta

14.8

14.9

15

15.1

15.2

M
ax

im
um

 P
ow

er

(b) wikipedia-20051105 (scale-free network)

Figure 5: Performance, Average, and Peak Power for Varied Delta

Figure 6: A dynamically adaptive (or “tunable”) near+far al-
gorithm

4.2 A�������M����
Recall that in iteration k the advance stage visits all neighbors of
nodes in the frontier, the size of which is X (1)

k . Intuitively, the ex-
pected amount of parallelism during advance would be the average
node degree times the frontier size; therefore, letting X̂ (2)

k denote

an estimate of X (2)
k , we might posit a model for X̂ (2)

k of the form,

X̂ (2)
k = d · X (1)

k , (1)

where d speci�es how the cardinality of the output of the advance
stage scales with the input frontier size X (1)

k . In other words, the

model parameter d becomes an estimate of the average degree of
nodes in the frontier.

We seek a value for d that minimizes the deviation of X̂ (2)
k from

X (2)
k by some measure, such as the sum of squared errors,

min
d

X

k

✓
X (2)
k � X̂

(2)
k

◆2
= min

d

X

k

✓
X (2)
k � d · X

(1)
k

◆2
. (2)

We use the online method of stochastic gradient descent to update
d after observing the true values of X (1)

k and X (2)
k in each iteration

k [24]. The precise updates are given by Algorithm 1.
In our experiments, the algorithm described above can converge

to an acceptable value of d after about 10 iterations. However, an
improper parameter estimation (as would occur before the algo-
rithm converges) can make the algorithm unstable during initial
iterations. To reduce overshoots and undershoots in our estimates
of d before algorithm stabilizes, we add a log barrier penalty to the
cost function eq. (2), which regularizes the algorithm’s behavior
in the initial iterations [4]. Therefore, we use the following cost
function during the initial stage of the algorithm (i.e., initial 10
iterations):

min
d

X

k

✓
X (2)
k � d · X

(1)
k

◆2
� � lnd (3)

This form penalizes smaller values of d , which would otherwise
cause our predicted values for X (1)

k+1 (see below) to become unrea-
sonably large. Here, � is a parameter that can be used to generalize

Estimator

 43

http://hpcgarage.org/uccs

hpcgarage.org/uccs

Supercomputing 2017, November 2017, Denver, Colorado USA

10 50 100 250 500
Delta (#104)

0

2

4

6

Ti
m

e
(#

10
4)

10 50 100 250 500
Delta (#104)

8

10

12

14

Av
er

ag
e

Po
w

er

10 50 100 250 500
Delta (#104)

10

12

14

16

M
ax

im
um

 P
ow

er

(a) Cal (road network)

5 10 20 40 60 80
Delta

0

5

10

Ti
m

e
(#

 1
03)

5 10 20 40 60 80
Delta

10.5

11

11.5

12

Av
er

ag
e

Po
w

er

5 10 20 40 60 80
Delta

14.8

14.9

15

15.1

15.2

M
ax

im
um

 P
ow

er

(b) wikipedia-20051105 (scale-free network)

Figure 5: Performance, Average, and Peak Power for Varied Delta

Figure 6: A dynamically adaptive (or “tunable”) near+far al-
gorithm

4.2 A�������M����
Recall that in iteration k the advance stage visits all neighbors of
nodes in the frontier, the size of which is X (1)

k . Intuitively, the ex-
pected amount of parallelism during advance would be the average
node degree times the frontier size; therefore, letting X̂ (2)

k denote

an estimate of X (2)
k , we might posit a model for X̂ (2)

k of the form,

X̂ (2)
k = d · X (1)

k , (1)

where d speci�es how the cardinality of the output of the advance
stage scales with the input frontier size X (1)

k . In other words, the

model parameter d becomes an estimate of the average degree of
nodes in the frontier.

We seek a value for d that minimizes the deviation of X̂ (2)
k from

X (2)
k by some measure, such as the sum of squared errors,

min
d

X

k

✓
X (2)
k � X̂

(2)
k

◆2
= min

d

X

k

✓
X (2)
k � d · X

(1)
k

◆2
. (2)

We use the online method of stochastic gradient descent to update
d after observing the true values of X (1)

k and X (2)
k in each iteration

k [24]. The precise updates are given by Algorithm 1.
In our experiments, the algorithm described above can converge

to an acceptable value of d after about 10 iterations. However, an
improper parameter estimation (as would occur before the algo-
rithm converges) can make the algorithm unstable during initial
iterations. To reduce overshoots and undershoots in our estimates
of d before algorithm stabilizes, we add a log barrier penalty to the
cost function eq. (2), which regularizes the algorithm’s behavior
in the initial iterations [4]. Therefore, we use the following cost
function during the initial stage of the algorithm (i.e., initial 10
iterations):

min
d

X

k

✓
X (2)
k � d · X

(1)
k

◆2
� � lnd (3)

This form penalizes smaller values of d , which would otherwise
cause our predicted values for X (1)

k+1 (see below) to become unrea-
sonably large. Here, � is a parameter that can be used to generalize

Estimator

Parameter
 43

http://hpcgarage.org/uccs

hpcgarage.org/uccs

Supercomputing 2017, November 2017, Denver, Colorado USA

10 50 100 250 500
Delta (#104)

0

2

4

6

Ti
m

e
(#

10
4)

10 50 100 250 500
Delta (#104)

8

10

12

14

Av
er

ag
e

Po
w

er

10 50 100 250 500
Delta (#104)

10

12

14

16

M
ax

im
um

 P
ow

er

(a) Cal (road network)

5 10 20 40 60 80
Delta

0

5

10

Ti
m

e
(#

 1
03)

5 10 20 40 60 80
Delta

10.5

11

11.5

12

Av
er

ag
e

Po
w

er

5 10 20 40 60 80
Delta

14.8

14.9

15

15.1

15.2

M
ax

im
um

 P
ow

er

(b) wikipedia-20051105 (scale-free network)

Figure 5: Performance, Average, and Peak Power for Varied Delta

Figure 6: A dynamically adaptive (or “tunable”) near+far al-
gorithm

4.2 A�������M����
Recall that in iteration k the advance stage visits all neighbors of
nodes in the frontier, the size of which is X (1)

k . Intuitively, the ex-
pected amount of parallelism during advance would be the average
node degree times the frontier size; therefore, letting X̂ (2)

k denote

an estimate of X (2)
k , we might posit a model for X̂ (2)

k of the form,

X̂ (2)
k = d · X (1)

k , (1)

where d speci�es how the cardinality of the output of the advance
stage scales with the input frontier size X (1)

k . In other words, the

model parameter d becomes an estimate of the average degree of
nodes in the frontier.

We seek a value for d that minimizes the deviation of X̂ (2)
k from

X (2)
k by some measure, such as the sum of squared errors,

min
d

X

k

✓
X (2)
k � X̂

(2)
k

◆2
= min

d

X

k

✓
X (2)
k � d · X

(1)
k

◆2
. (2)

We use the online method of stochastic gradient descent to update
d after observing the true values of X (1)

k and X (2)
k in each iteration

k [24]. The precise updates are given by Algorithm 1.
In our experiments, the algorithm described above can converge

to an acceptable value of d after about 10 iterations. However, an
improper parameter estimation (as would occur before the algo-
rithm converges) can make the algorithm unstable during initial
iterations. To reduce overshoots and undershoots in our estimates
of d before algorithm stabilizes, we add a log barrier penalty to the
cost function eq. (2), which regularizes the algorithm’s behavior
in the initial iterations [4]. Therefore, we use the following cost
function during the initial stage of the algorithm (i.e., initial 10
iterations):

min
d

X

k

✓
X (2)
k � d · X

(1)
k

◆2
� � lnd (3)

This form penalizes smaller values of d , which would otherwise
cause our predicted values for X (1)

k+1 (see below) to become unrea-
sonably large. Here, � is a parameter that can be used to generalize

Estimator

Parameter

Supercomputing 2017, November 2017, Denver, Colorado USA

10 50 100 250 500
Delta (#104)

0

2

4

6

Ti
m

e
(#

10
4)

10 50 100 250 500
Delta (#104)

8

10

12

14

Av
er

ag
e

Po
w

er

10 50 100 250 500
Delta (#104)

10

12

14

16

M
ax

im
um

 P
ow

er

(a) Cal (road network)

5 10 20 40 60 80
Delta

0

5

10

Ti
m

e
(#

 1
03)

5 10 20 40 60 80
Delta

10.5

11

11.5

12

Av
er

ag
e

Po
w

er

5 10 20 40 60 80
Delta

14.8

14.9

15

15.1

15.2

M
ax

im
um

 P
ow

er

(b) wikipedia-20051105 (scale-free network)

Figure 5: Performance, Average, and Peak Power for Varied Delta

Figure 6: A dynamically adaptive (or “tunable”) near+far al-
gorithm

4.2 A�������M����
Recall that in iteration k the advance stage visits all neighbors of
nodes in the frontier, the size of which is X (1)

k . Intuitively, the ex-
pected amount of parallelism during advance would be the average
node degree times the frontier size; therefore, letting X̂ (2)

k denote

an estimate of X (2)
k , we might posit a model for X̂ (2)

k of the form,

X̂ (2)
k = d · X (1)

k , (1)

where d speci�es how the cardinality of the output of the advance
stage scales with the input frontier size X (1)

k . In other words, the

model parameter d becomes an estimate of the average degree of
nodes in the frontier.

We seek a value for d that minimizes the deviation of X̂ (2)
k from

X (2)
k by some measure, such as the sum of squared errors,

min
d

X

k

✓
X (2)
k � X̂

(2)
k

◆2
= min

d

X

k

✓
X (2)
k � d · X

(1)
k

◆2
. (2)

We use the online method of stochastic gradient descent to update
d after observing the true values of X (1)

k and X (2)
k in each iteration

k [24]. The precise updates are given by Algorithm 1.
In our experiments, the algorithm described above can converge

to an acceptable value of d after about 10 iterations. However, an
improper parameter estimation (as would occur before the algo-
rithm converges) can make the algorithm unstable during initial
iterations. To reduce overshoots and undershoots in our estimates
of d before algorithm stabilizes, we add a log barrier penalty to the
cost function eq. (2), which regularizes the algorithm’s behavior
in the initial iterations [4]. Therefore, we use the following cost
function during the initial stage of the algorithm (i.e., initial 10
iterations):

min
d

X

k

✓
X (2)
k � d · X

(1)
k

◆2
� � lnd (3)

This form penalizes smaller values of d , which would otherwise
cause our predicted values for X (1)

k+1 (see below) to become unrea-
sonably large. Here, � is a parameter that can be used to generalize

Loss

 43

http://hpcgarage.org/uccs

hpcgarage.org/uccs

Supercomputing 2017, November 2017, Denver, Colorado USA

10 50 100 250 500
Delta (#104)

0

2

4

6

Ti
m

e
(#

10
4)

10 50 100 250 500
Delta (#104)

8

10

12

14

Av
er

ag
e

Po
w

er

10 50 100 250 500
Delta (#104)

10

12

14

16

M
ax

im
um

 P
ow

er

(a) Cal (road network)

5 10 20 40 60 80
Delta

0

5

10

Ti
m

e
(#

 1
03)

5 10 20 40 60 80
Delta

10.5

11

11.5

12

Av
er

ag
e

Po
w

er

5 10 20 40 60 80
Delta

14.8

14.9

15

15.1

15.2

M
ax

im
um

 P
ow

er

(b) wikipedia-20051105 (scale-free network)

Figure 5: Performance, Average, and Peak Power for Varied Delta

Figure 6: A dynamically adaptive (or “tunable”) near+far al-
gorithm

4.2 A�������M����
Recall that in iteration k the advance stage visits all neighbors of
nodes in the frontier, the size of which is X (1)

k . Intuitively, the ex-
pected amount of parallelism during advance would be the average
node degree times the frontier size; therefore, letting X̂ (2)

k denote

an estimate of X (2)
k , we might posit a model for X̂ (2)

k of the form,

X̂ (2)
k = d · X (1)

k , (1)

where d speci�es how the cardinality of the output of the advance
stage scales with the input frontier size X (1)

k . In other words, the

model parameter d becomes an estimate of the average degree of
nodes in the frontier.

We seek a value for d that minimizes the deviation of X̂ (2)
k from

X (2)
k by some measure, such as the sum of squared errors,

min
d

X

k

✓
X (2)
k � X̂

(2)
k

◆2
= min

d

X

k

✓
X (2)
k � d · X

(1)
k

◆2
. (2)

We use the online method of stochastic gradient descent to update
d after observing the true values of X (1)

k and X (2)
k in each iteration

k [24]. The precise updates are given by Algorithm 1.
In our experiments, the algorithm described above can converge

to an acceptable value of d after about 10 iterations. However, an
improper parameter estimation (as would occur before the algo-
rithm converges) can make the algorithm unstable during initial
iterations. To reduce overshoots and undershoots in our estimates
of d before algorithm stabilizes, we add a log barrier penalty to the
cost function eq. (2), which regularizes the algorithm’s behavior
in the initial iterations [4]. Therefore, we use the following cost
function during the initial stage of the algorithm (i.e., initial 10
iterations):

min
d

X

k

✓
X (2)
k � d · X

(1)
k

◆2
� � lnd (3)

This form penalizes smaller values of d , which would otherwise
cause our predicted values for X (1)

k+1 (see below) to become unrea-
sonably large. Here, � is a parameter that can be used to generalize

Estimator

Parameter

Supercomputing 2017, November 2017, Denver, Colorado USA

10 50 100 250 500
Delta (#104)

0

2

4

6

Ti
m

e
(#

10
4)

10 50 100 250 500
Delta (#104)

8

10

12

14

Av
er

ag
e

Po
w

er

10 50 100 250 500
Delta (#104)

10

12

14

16

M
ax

im
um

 P
ow

er

(a) Cal (road network)

5 10 20 40 60 80
Delta

0

5

10

Ti
m

e
(#

 1
03)

5 10 20 40 60 80
Delta

10.5

11

11.5

12

Av
er

ag
e

Po
w

er

5 10 20 40 60 80
Delta

14.8

14.9

15

15.1

15.2

M
ax

im
um

 P
ow

er

(b) wikipedia-20051105 (scale-free network)

Figure 5: Performance, Average, and Peak Power for Varied Delta

Figure 6: A dynamically adaptive (or “tunable”) near+far al-
gorithm

4.2 A�������M����
Recall that in iteration k the advance stage visits all neighbors of
nodes in the frontier, the size of which is X (1)

k . Intuitively, the ex-
pected amount of parallelism during advance would be the average
node degree times the frontier size; therefore, letting X̂ (2)

k denote

an estimate of X (2)
k , we might posit a model for X̂ (2)

k of the form,

X̂ (2)
k = d · X (1)

k , (1)

where d speci�es how the cardinality of the output of the advance
stage scales with the input frontier size X (1)

k . In other words, the

model parameter d becomes an estimate of the average degree of
nodes in the frontier.

We seek a value for d that minimizes the deviation of X̂ (2)
k from

X (2)
k by some measure, such as the sum of squared errors,

min
d

X

k

✓
X (2)
k � X̂

(2)
k

◆2
= min

d

X

k

✓
X (2)
k � d · X

(1)
k

◆2
. (2)

We use the online method of stochastic gradient descent to update
d after observing the true values of X (1)

k and X (2)
k in each iteration

k [24]. The precise updates are given by Algorithm 1.
In our experiments, the algorithm described above can converge

to an acceptable value of d after about 10 iterations. However, an
improper parameter estimation (as would occur before the algo-
rithm converges) can make the algorithm unstable during initial
iterations. To reduce overshoots and undershoots in our estimates
of d before algorithm stabilizes, we add a log barrier penalty to the
cost function eq. (2), which regularizes the algorithm’s behavior
in the initial iterations [4]. Therefore, we use the following cost
function during the initial stage of the algorithm (i.e., initial 10
iterations):

min
d

X

k

✓
X (2)
k � d · X

(1)
k

◆2
� � lnd (3)

This form penalizes smaller values of d , which would otherwise
cause our predicted values for X (1)

k+1 (see below) to become unrea-
sonably large. Here, � is a parameter that can be used to generalize

Supercomputing 2017, November 2017, Denver, Colorado USA

10 50 100 250 500
Delta (#104)

0

2

4

6

Ti
m

e
(#

10
4)

10 50 100 250 500
Delta (#104)

8

10

12

14
Av

er
ag

e
Po

w
er

10 50 100 250 500
Delta (#104)

10

12

14

16

M
ax

im
um

 P
ow

er

(a) Cal (road network)

5 10 20 40 60 80
Delta

0

5

10

Ti
m

e
(#

 1
03)

5 10 20 40 60 80
Delta

10.5

11

11.5

12

Av
er

ag
e

Po
w

er

5 10 20 40 60 80
Delta

14.8

14.9

15

15.1

15.2

M
ax

im
um

 P
ow

er

(b) wikipedia-20051105 (scale-free network)

Figure 5: Performance, Average, and Peak Power for Varied Delta

Figure 6: A dynamically adaptive (or “tunable”) near+far al-
gorithm

4.2 A�������M����
Recall that in iteration k the advance stage visits all neighbors of
nodes in the frontier, the size of which is X (1)

k . Intuitively, the ex-
pected amount of parallelism during advance would be the average
node degree times the frontier size; therefore, letting X̂ (2)

k denote

an estimate of X (2)
k , we might posit a model for X̂ (2)

k of the form,

X̂ (2)
k = d · X (1)

k , (1)

where d speci�es how the cardinality of the output of the advance
stage scales with the input frontier size X (1)

k . In other words, the

model parameter d becomes an estimate of the average degree of
nodes in the frontier.

We seek a value for d that minimizes the deviation of X̂ (2)
k from

X (2)
k by some measure, such as the sum of squared errors,

min
d

X

k

✓
X (2)
k � X̂

(2)
k

◆2
= min

d

X

k

✓
X (2)
k � d · X

(1)
k

◆2
. (2)

We use the online method of stochastic gradient descent to update
d after observing the true values of X (1)

k and X (2)
k in each iteration

k [24]. The precise updates are given by Algorithm 1.
In our experiments, the algorithm described above can converge

to an acceptable value of d after about 10 iterations. However, an
improper parameter estimation (as would occur before the algo-
rithm converges) can make the algorithm unstable during initial
iterations. To reduce overshoots and undershoots in our estimates
of d before algorithm stabilizes, we add a log barrier penalty to the
cost function eq. (2), which regularizes the algorithm’s behavior
in the initial iterations [4]. Therefore, we use the following cost
function during the initial stage of the algorithm (i.e., initial 10
iterations):

min
d

X

k

✓
X (2)
k � d · X

(1)
k

◆2
� � lnd (3)

This form penalizes smaller values of d , which would otherwise
cause our predicted values for X (1)

k+1 (see below) to become unrea-
sonably large. Here, � is a parameter that can be used to generalize

Loss

 43

http://hpcgarage.org/uccs

hpcgarage.org/uccs

Regularize to stabilize the estimator during the early iterations and use
online fitting method (e.g., stochastic gradient descent)

Supercomputing 2017, November 2017, Denver, Colorado USA

10 50 100 250 500
Delta (#104)

0

2

4

6

Ti
m

e
(#

10
4)

10 50 100 250 500
Delta (#104)

8

10

12

14

Av
er

ag
e

Po
w

er

10 50 100 250 500
Delta (#104)

10

12

14

16

M
ax

im
um

 P
ow

er

(a) Cal (road network)

5 10 20 40 60 80
Delta

0

5

10

Ti
m

e
(#

 1
03)

5 10 20 40 60 80
Delta

10.5

11

11.5

12

Av
er

ag
e

Po
w

er

5 10 20 40 60 80
Delta

14.8

14.9

15

15.1

15.2

M
ax

im
um

 P
ow

er

(b) wikipedia-20051105 (scale-free network)

Figure 5: Performance, Average, and Peak Power for Varied Delta

Figure 6: A dynamically adaptive (or “tunable”) near+far al-
gorithm

4.2 A�������M����
Recall that in iteration k the advance stage visits all neighbors of
nodes in the frontier, the size of which is X (1)

k . Intuitively, the ex-
pected amount of parallelism during advance would be the average
node degree times the frontier size; therefore, letting X̂ (2)

k denote

an estimate of X (2)
k , we might posit a model for X̂ (2)

k of the form,

X̂ (2)
k = d · X (1)

k , (1)

where d speci�es how the cardinality of the output of the advance
stage scales with the input frontier size X (1)

k . In other words, the

model parameter d becomes an estimate of the average degree of
nodes in the frontier.

We seek a value for d that minimizes the deviation of X̂ (2)
k from

X (2)
k by some measure, such as the sum of squared errors,

min
d

X

k

✓
X (2)
k � X̂

(2)
k

◆2
= min

d

X

k

✓
X (2)
k � d · X

(1)
k

◆2
. (2)

We use the online method of stochastic gradient descent to update
d after observing the true values of X (1)

k and X (2)
k in each iteration

k [24]. The precise updates are given by Algorithm 1.
In our experiments, the algorithm described above can converge

to an acceptable value of d after about 10 iterations. However, an
improper parameter estimation (as would occur before the algo-
rithm converges) can make the algorithm unstable during initial
iterations. To reduce overshoots and undershoots in our estimates
of d before algorithm stabilizes, we add a log barrier penalty to the
cost function eq. (2), which regularizes the algorithm’s behavior
in the initial iterations [4]. Therefore, we use the following cost
function during the initial stage of the algorithm (i.e., initial 10
iterations):

min
d

X

k

✓
X (2)
k � d · X

(1)
k

◆2
� � lnd (3)

This form penalizes smaller values of d , which would otherwise
cause our predicted values for X (1)

k+1 (see below) to become unrea-
sonably large. Here, � is a parameter that can be used to generalize

Loss

 44

http://hpcgarage.org/uccs

hpcgarage.org/uccsConstrain parallelism…

 45

http://hpcgarage.org/uccs

hpcgarage.org/uccsConstrain parallelism…

Largest queue
 45

http://hpcgarage.org/uccs

hpcgarage.org/uccsConstrain parallelism…

Constrain: ≤ P

Largest queue
 45

http://hpcgarage.org/uccs

hpcgarage.org/uccsConstrain parallelism…

Constrain: ≤ P

Largest queue

A Power-Tunable Single-Source Shortest Path Algorithm Supercomputing 2017, November 2017, Denver, Colorado USA

Algorithm 1 Stochastic gradient descent with an adaptive learning
rate [24]. Initially, when k = 0, this algorithm takes X (1)

0 = 1 for
the initial source vertex, � = 2, and � = h = � = 0.

1: Od = �2
✓
X (2)
k � d · X (1)

k

◆
X (1)
k

2: O2
d = 2

✓
X (1)
k

◆2

3: �
⇣
1 � ��1

⌘
· � + ��1 · Od

4: �
⇣
1 � ��1

⌘
· � + ��1 · (Od)

2

5: h
⇣
1 � ��1

⌘
· h + ��1 · O2

d

6: µ (�)2

h ·�
7: �

✓
1 � (�)2

�

◆
· � + 1

8: d d � µOd

our cost function. During the initial iterations, it can be a set to a
non-zero value and then clamped to zero in subsequent iterations
it can be clamped to zero, e�ectively removing the barrier function.
In relation to the update formulas of Algorithm 1, the �rst and
second derivative formulas (lines 1 and 2) get additional ��/d and
�/d2 terms, respectively.

4.3 Constraining parallelism
Recall from §3 that the available parallelism in the next iteration,
k + 1, will be at most X (2)

k+1. Thus, we would like X (2)
k+1 P , the

target parallelism set-point. From the A�������M����, we can
thus estimate that it would be desirable to have an input frontier
size of

X̂ (1)
k+1

P

d
. (4)

This target constraint on the input frontier size becomes the goal
for the B������M����.

4.4 B������M����
The B������M���� is the estimator associated with the rebalancer
stage. This stage consumes the frontier, of size X (4)

k , and may move
vertices from the far queue to the frontier if it is determined that
the delta-value needs to change. The updated frontier becomes the
input to the next iteration, and its size will be X (1)

k+1.
Suppose we determine that a change of size ��k to the current

delta-value is necessary. A value of ��k = 0 means no change is
necessary, so that the updated frontier of size X (4)

k is exactly the

size of the input frontier in the next iteration, X (1)
k+1. Otherwise, we

estimate X (1)
k+1 by a linear model of the form,

X̂ (1)
k+1 = X (4)

k + � · ��k , (5)

where X̂ (1)
k+1 denotes the estimate ofX (1)

k+1 and � is a parameter to be
learned. Similar to the A�������M����, we formulate the problem
of choosing � as one of minimizing the deviation between X̂ (1)

k+1

and X (1)
k+1:

min
�

X

k

✓
X (1)
k+1 � X̂

(1)
k+1

◆2
= min

�

X

k

✓
X (1)
k+1 � X

(4)
k + � · ��k

◆2
.

(6)
For brevity, we omit the update formulas but they are exactly anal-
ogous to Algorithm 1 with derivatives taken with respect to � .

4.5 Updating the delta-value
Given d and � , the new �k+1 at iteration k + 1 may be derived by
combining eq. (4) and eq. (5):

�k+1 �k +
X̂ (1)
k+1 � X

(4)
k

�
= �k +

P
d � X

(4)
k

�
. (7)

4.6 Rebalancing
To control the parallelism imposed by the size of far queue, our
controller recursively partitions the far queue, based on the vertex
distance from the source, to keep the size of each partition below
the parallelism set-point P . This is accomplished by periodically
updating partition boundaries. Once these boundaries are updated,
in each iteration, the bisect-frontier and rebalancer stages place
each new vertex into partition i if Bi�1 < d Bi , where d , Bi�1,
and Bi are vertex distance, lower bound of partition i , and upper
bound of partition i , respectively. Note that the upper bound of
partition i � 1 is always equal to the lower bound of partition i; that
is, both are equal to Bi�1.

The far queue partitioning algorithm starts with single parti-
tion with its lower and upper bounds initialized to 0 and MAX_INT,
respectively. In each iteration, if the size of a partition is greater
than P , then the upper bound of the partition is updated. If the
updated upper bound belongs to the last partition, a new partition
with its upper bound equal to MAX_INT is appended to the sequence
of existing partitions. Critically, updates to the boundaries only
impact the subsequent iterations. However, to preserve the algo-
rithm’s correctness, we have to impose monotonic boundary shifts.
In other words, the updates to boundaries will always decrease their
value. Accordingly, the following modi�cations are made to bisect-
frontier and and bisect-far-queue stages: in bisect-frontier, when
the algorithm adds vertices to the far queue, a vertex is assigned to
a partition based on its distance d . In bisect-far-queue, instead of
searching all vertices to �nd ones with the desired distance, only
the partitions with the desired boundaries are searched.

The method for selecting boundaries is similar to the model used
to �nd the optimal � in Sec. 4.4. The B������M���� in eq. (5) for-
mulates the relation between ��k and the number of vertices with
their distance in the range [�k ,�k+1]. Here, the desired number of
vertices in the range dictated by partition boundaries is P , and with
the lower bound anchored to the upper bound of the previous par-
tition, we need to update the upper bound for the current partition.
Therefore, the update formula is:

Bi Bi�1 +
P

�
. (8)

 45

http://hpcgarage.org/uccs

hpcgarage.org/uccsEstimate the effect of a change in 𝛅

A Power-Tunable Single-Source Shortest Path Algorithm Supercomputing 2017, November 2017, Denver, Colorado USA

Algorithm 1 Stochastic gradient descent with an adaptive learning
rate [24]. Initially, when k = 0, this algorithm takes X (1)

0 = 1 for
the initial source vertex, � = 2, and � = h = � = 0.

1: Od = �2
✓
X (2)
k � d · X (1)

k

◆
X (1)
k

2: O2
d = 2

✓
X (1)
k

◆2

3: �
⇣
1 � ��1

⌘
· � + ��1 · Od

4: �
⇣
1 � ��1

⌘
· � + ��1 · (Od)

2

5: h
⇣
1 � ��1

⌘
· h + ��1 · O2

d

6: µ (�)2

h ·�
7: �

✓
1 � (�)2

�

◆
· � + 1

8: d d � µOd

our cost function. During the initial iterations, it can be a set to a
non-zero value and then clamped to zero in subsequent iterations
it can be clamped to zero, e�ectively removing the barrier function.
In relation to the update formulas of Algorithm 1, the �rst and
second derivative formulas (lines 1 and 2) get additional ��/d and
�/d2 terms, respectively.

4.3 Constraining parallelism
Recall from §3 that the available parallelism in the next iteration,
k + 1, will be at most X (2)

k+1. Thus, we would like X (2)
k+1 P , the

target parallelism set-point. From the A�������M����, we can
thus estimate that it would be desirable to have an input frontier
size of

X̂ (1)
k+1

P

d
. (4)

This target constraint on the input frontier size becomes the goal
for the B������M����.

4.4 B������M����
The B������M���� is the estimator associated with the rebalancer
stage. This stage consumes the frontier, of size X (4)

k , and may move
vertices from the far queue to the frontier if it is determined that
the delta-value needs to change. The updated frontier becomes the
input to the next iteration, and its size will be X (1)

k+1.
Suppose we determine that a change of size ��k to the current

delta-value is necessary. A value of ��k = 0 means no change is
necessary, so that the updated frontier of size X (4)

k is exactly the

size of the input frontier in the next iteration, X (1)
k+1. Otherwise, we

estimate X (1)
k+1 by a linear model of the form,

X̂ (1)
k+1 = X (4)

k + � · ��k , (5)

where X̂ (1)
k+1 denotes the estimate ofX (1)

k+1 and � is a parameter to be
learned. Similar to the A�������M����, we formulate the problem
of choosing � as one of minimizing the deviation between X̂ (1)

k+1

and X (1)
k+1:

min
�

X

k

✓
X (1)
k+1 � X̂

(1)
k+1

◆2
= min

�

X

k

✓
X (1)
k+1 � X

(4)
k + � · ��k

◆2
.

(6)
For brevity, we omit the update formulas but they are exactly anal-
ogous to Algorithm 1 with derivatives taken with respect to � .

4.5 Updating the delta-value
Given d and � , the new �k+1 at iteration k + 1 may be derived by
combining eq. (4) and eq. (5):

�k+1 �k +
X̂ (1)
k+1 � X

(4)
k

�
= �k +

P
d � X

(4)
k

�
. (7)

4.6 Rebalancing
To control the parallelism imposed by the size of far queue, our
controller recursively partitions the far queue, based on the vertex
distance from the source, to keep the size of each partition below
the parallelism set-point P . This is accomplished by periodically
updating partition boundaries. Once these boundaries are updated,
in each iteration, the bisect-frontier and rebalancer stages place
each new vertex into partition i if Bi�1 < d Bi , where d , Bi�1,
and Bi are vertex distance, lower bound of partition i , and upper
bound of partition i , respectively. Note that the upper bound of
partition i � 1 is always equal to the lower bound of partition i; that
is, both are equal to Bi�1.

The far queue partitioning algorithm starts with single parti-
tion with its lower and upper bounds initialized to 0 and MAX_INT,
respectively. In each iteration, if the size of a partition is greater
than P , then the upper bound of the partition is updated. If the
updated upper bound belongs to the last partition, a new partition
with its upper bound equal to MAX_INT is appended to the sequence
of existing partitions. Critically, updates to the boundaries only
impact the subsequent iterations. However, to preserve the algo-
rithm’s correctness, we have to impose monotonic boundary shifts.
In other words, the updates to boundaries will always decrease their
value. Accordingly, the following modi�cations are made to bisect-
frontier and and bisect-far-queue stages: in bisect-frontier, when
the algorithm adds vertices to the far queue, a vertex is assigned to
a partition based on its distance d . In bisect-far-queue, instead of
searching all vertices to �nd ones with the desired distance, only
the partitions with the desired boundaries are searched.

The method for selecting boundaries is similar to the model used
to �nd the optimal � in Sec. 4.4. The B������M���� in eq. (5) for-
mulates the relation between ��k and the number of vertices with
their distance in the range [�k ,�k+1]. Here, the desired number of
vertices in the range dictated by partition boundaries is P , and with
the lower bound anchored to the upper bound of the previous par-
tition, we need to update the upper bound for the current partition.
Therefore, the update formula is:

Bi Bi�1 +
P

�
. (8)

 46

http://hpcgarage.org/uccs

hpcgarage.org/uccsEstimate the effect of a change in 𝛅

A Power-Tunable Single-Source Shortest Path Algorithm Supercomputing 2017, November 2017, Denver, Colorado USA

Algorithm 1 Stochastic gradient descent with an adaptive learning
rate [24]. Initially, when k = 0, this algorithm takes X (1)

0 = 1 for
the initial source vertex, � = 2, and � = h = � = 0.

1: Od = �2
✓
X (2)
k � d · X (1)

k

◆
X (1)
k

2: O2
d = 2

✓
X (1)
k

◆2

3: �
⇣
1 � ��1

⌘
· � + ��1 · Od

4: �
⇣
1 � ��1

⌘
· � + ��1 · (Od)

2

5: h
⇣
1 � ��1

⌘
· h + ��1 · O2

d

6: µ (�)2

h ·�
7: �

✓
1 � (�)2

�

◆
· � + 1

8: d d � µOd

our cost function. During the initial iterations, it can be a set to a
non-zero value and then clamped to zero in subsequent iterations
it can be clamped to zero, e�ectively removing the barrier function.
In relation to the update formulas of Algorithm 1, the �rst and
second derivative formulas (lines 1 and 2) get additional ��/d and
�/d2 terms, respectively.

4.3 Constraining parallelism
Recall from §3 that the available parallelism in the next iteration,
k + 1, will be at most X (2)

k+1. Thus, we would like X (2)
k+1 P , the

target parallelism set-point. From the A�������M����, we can
thus estimate that it would be desirable to have an input frontier
size of

X̂ (1)
k+1

P

d
. (4)

This target constraint on the input frontier size becomes the goal
for the B������M����.

4.4 B������M����
The B������M���� is the estimator associated with the rebalancer
stage. This stage consumes the frontier, of size X (4)

k , and may move
vertices from the far queue to the frontier if it is determined that
the delta-value needs to change. The updated frontier becomes the
input to the next iteration, and its size will be X (1)

k+1.
Suppose we determine that a change of size ��k to the current

delta-value is necessary. A value of ��k = 0 means no change is
necessary, so that the updated frontier of size X (4)

k is exactly the

size of the input frontier in the next iteration, X (1)
k+1. Otherwise, we

estimate X (1)
k+1 by a linear model of the form,

X̂ (1)
k+1 = X (4)

k + � · ��k , (5)

where X̂ (1)
k+1 denotes the estimate ofX (1)

k+1 and � is a parameter to be
learned. Similar to the A�������M����, we formulate the problem
of choosing � as one of minimizing the deviation between X̂ (1)

k+1

and X (1)
k+1:

min
�

X

k

✓
X (1)
k+1 � X̂

(1)
k+1

◆2
= min

�

X

k

✓
X (1)
k+1 � X

(4)
k + � · ��k

◆2
.

(6)
For brevity, we omit the update formulas but they are exactly anal-
ogous to Algorithm 1 with derivatives taken with respect to � .

4.5 Updating the delta-value
Given d and � , the new �k+1 at iteration k + 1 may be derived by
combining eq. (4) and eq. (5):

�k+1 �k +
X̂ (1)
k+1 � X

(4)
k

�
= �k +

P
d � X

(4)
k

�
. (7)

4.6 Rebalancing
To control the parallelism imposed by the size of far queue, our
controller recursively partitions the far queue, based on the vertex
distance from the source, to keep the size of each partition below
the parallelism set-point P . This is accomplished by periodically
updating partition boundaries. Once these boundaries are updated,
in each iteration, the bisect-frontier and rebalancer stages place
each new vertex into partition i if Bi�1 < d Bi , where d , Bi�1,
and Bi are vertex distance, lower bound of partition i , and upper
bound of partition i , respectively. Note that the upper bound of
partition i � 1 is always equal to the lower bound of partition i; that
is, both are equal to Bi�1.

The far queue partitioning algorithm starts with single parti-
tion with its lower and upper bounds initialized to 0 and MAX_INT,
respectively. In each iteration, if the size of a partition is greater
than P , then the upper bound of the partition is updated. If the
updated upper bound belongs to the last partition, a new partition
with its upper bound equal to MAX_INT is appended to the sequence
of existing partitions. Critically, updates to the boundaries only
impact the subsequent iterations. However, to preserve the algo-
rithm’s correctness, we have to impose monotonic boundary shifts.
In other words, the updates to boundaries will always decrease their
value. Accordingly, the following modi�cations are made to bisect-
frontier and and bisect-far-queue stages: in bisect-frontier, when
the algorithm adds vertices to the far queue, a vertex is assigned to
a partition based on its distance d . In bisect-far-queue, instead of
searching all vertices to �nd ones with the desired distance, only
the partitions with the desired boundaries are searched.

The method for selecting boundaries is similar to the model used
to �nd the optimal � in Sec. 4.4. The B������M���� in eq. (5) for-
mulates the relation between ��k and the number of vertices with
their distance in the range [�k ,�k+1]. Here, the desired number of
vertices in the range dictated by partition boundaries is P , and with
the lower bound anchored to the upper bound of the previous par-
tition, we need to update the upper bound for the current partition.
Therefore, the update formula is:

Bi Bi�1 +
P

�
. (8)

Estimator

 46

http://hpcgarage.org/uccs

hpcgarage.org/uccsEstimate the effect of a change in 𝛅

A Power-Tunable Single-Source Shortest Path Algorithm Supercomputing 2017, November 2017, Denver, Colorado USA

Algorithm 1 Stochastic gradient descent with an adaptive learning
rate [24]. Initially, when k = 0, this algorithm takes X (1)

0 = 1 for
the initial source vertex, � = 2, and � = h = � = 0.

1: Od = �2
✓
X (2)
k � d · X (1)

k

◆
X (1)
k

2: O2
d = 2

✓
X (1)
k

◆2

3: �
⇣
1 � ��1

⌘
· � + ��1 · Od

4: �
⇣
1 � ��1

⌘
· � + ��1 · (Od)

2

5: h
⇣
1 � ��1

⌘
· h + ��1 · O2

d

6: µ (�)2

h ·�
7: �

✓
1 � (�)2

�

◆
· � + 1

8: d d � µOd

our cost function. During the initial iterations, it can be a set to a
non-zero value and then clamped to zero in subsequent iterations
it can be clamped to zero, e�ectively removing the barrier function.
In relation to the update formulas of Algorithm 1, the �rst and
second derivative formulas (lines 1 and 2) get additional ��/d and
�/d2 terms, respectively.

4.3 Constraining parallelism
Recall from §3 that the available parallelism in the next iteration,
k + 1, will be at most X (2)

k+1. Thus, we would like X (2)
k+1 P , the

target parallelism set-point. From the A�������M����, we can
thus estimate that it would be desirable to have an input frontier
size of

X̂ (1)
k+1

P

d
. (4)

This target constraint on the input frontier size becomes the goal
for the B������M����.

4.4 B������M����
The B������M���� is the estimator associated with the rebalancer
stage. This stage consumes the frontier, of size X (4)

k , and may move
vertices from the far queue to the frontier if it is determined that
the delta-value needs to change. The updated frontier becomes the
input to the next iteration, and its size will be X (1)

k+1.
Suppose we determine that a change of size ��k to the current

delta-value is necessary. A value of ��k = 0 means no change is
necessary, so that the updated frontier of size X (4)

k is exactly the

size of the input frontier in the next iteration, X (1)
k+1. Otherwise, we

estimate X (1)
k+1 by a linear model of the form,

X̂ (1)
k+1 = X (4)

k + � · ��k , (5)

where X̂ (1)
k+1 denotes the estimate ofX (1)

k+1 and � is a parameter to be
learned. Similar to the A�������M����, we formulate the problem
of choosing � as one of minimizing the deviation between X̂ (1)

k+1

and X (1)
k+1:

min
�

X

k

✓
X (1)
k+1 � X̂

(1)
k+1

◆2
= min

�

X

k

✓
X (1)
k+1 � X

(4)
k + � · ��k

◆2
.

(6)
For brevity, we omit the update formulas but they are exactly anal-
ogous to Algorithm 1 with derivatives taken with respect to � .

4.5 Updating the delta-value
Given d and � , the new �k+1 at iteration k + 1 may be derived by
combining eq. (4) and eq. (5):

�k+1 �k +
X̂ (1)
k+1 � X

(4)
k

�
= �k +

P
d � X

(4)
k

�
. (7)

4.6 Rebalancing
To control the parallelism imposed by the size of far queue, our
controller recursively partitions the far queue, based on the vertex
distance from the source, to keep the size of each partition below
the parallelism set-point P . This is accomplished by periodically
updating partition boundaries. Once these boundaries are updated,
in each iteration, the bisect-frontier and rebalancer stages place
each new vertex into partition i if Bi�1 < d Bi , where d , Bi�1,
and Bi are vertex distance, lower bound of partition i , and upper
bound of partition i , respectively. Note that the upper bound of
partition i � 1 is always equal to the lower bound of partition i; that
is, both are equal to Bi�1.

The far queue partitioning algorithm starts with single parti-
tion with its lower and upper bounds initialized to 0 and MAX_INT,
respectively. In each iteration, if the size of a partition is greater
than P , then the upper bound of the partition is updated. If the
updated upper bound belongs to the last partition, a new partition
with its upper bound equal to MAX_INT is appended to the sequence
of existing partitions. Critically, updates to the boundaries only
impact the subsequent iterations. However, to preserve the algo-
rithm’s correctness, we have to impose monotonic boundary shifts.
In other words, the updates to boundaries will always decrease their
value. Accordingly, the following modi�cations are made to bisect-
frontier and and bisect-far-queue stages: in bisect-frontier, when
the algorithm adds vertices to the far queue, a vertex is assigned to
a partition based on its distance d . In bisect-far-queue, instead of
searching all vertices to �nd ones with the desired distance, only
the partitions with the desired boundaries are searched.

The method for selecting boundaries is similar to the model used
to �nd the optimal � in Sec. 4.4. The B������M���� in eq. (5) for-
mulates the relation between ��k and the number of vertices with
their distance in the range [�k ,�k+1]. Here, the desired number of
vertices in the range dictated by partition boundaries is P , and with
the lower bound anchored to the upper bound of the previous par-
tition, we need to update the upper bound for the current partition.
Therefore, the update formula is:

Bi Bi�1 +
P

�
. (8)

Estimator

Parameter
 46

http://hpcgarage.org/uccs

hpcgarage.org/uccs

Cool feature:

User sets P, the max parallelism, not 𝛅!

The controller chooses the hard-to-set 𝛅 fully automatically, adjusting it as frequently
as every iteration. Not discussed: One can prove that the controller is bounded-input
bounded-output (BIBO) stable, meaning frontier sizes will be “well-behaved.”

 47

http://hpcgarage.org/uccs

hpcgarage.org/uccs

Next question:

Does it work?

(Experimental results)

 48

http://hpcgarage.org/uccs

Baseline Near+Far:
Parallelism is highly irregular,
average parallelism is low
(scale-free input)

 49

Baseline Near+Far:
Parallelism is highly irregular,
average parallelism is low
(scale-free input)

 49

Pmax

Self-tuning controller:
Parallelism is more regular and
average parallelism is higher
(scale-free input)

 50

Pmax

Self-tuning controller:
Parallelism is more regular and
average parallelism is higher
(scale-free input)

 50

Pmax

Baseline Near+Far:
Low average parallelism
⇒ many iterations
(scale-free input)

 51

hpcgarage.org/uccs

10k 20k 40k Near+Far
0

1

2

3

4

5

Pa
ra
lle
lis
m

#104
(road network)

 52

http://hpcgarage.org/uccs

hpcgarage.org/uccs

10k 20k 40k Near+Far
0

1

2

3

4

5

Pa
ra
lle
lis
m

#104
(road network)

Baseline:

High variance

 52

http://hpcgarage.org/uccs

hpcgarage.org/uccs

10k 20k 40k Near+Far
0

1

2

3

4

5

Pa
ra
lle
lis
m

#104
(road network)

Baseline:

High variance

 52

http://hpcgarage.org/uccs

hpcgarage.org/uccs

10k 20k 40k Near+Far
0

1

2

3

4

5

Pa
ra
lle
lis
m

#104
(road network)

Baseline:

High variance

Self-tuning controller:

Tight distributions at a
desired target

 52

http://hpcgarage.org/uccs

hpcgarage.org/uccs

Next question:

Can it save power or

improve performance?

Compare against the baseline with a fixed 𝛅 and
hardware-based dynamic frequency scaling.

 53

http://hpcgarage.org/uccs

0.8 0.9 1 1.1
Average Power

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Sp

ee
du

p
P = 10K
P = 20K
P = 40K
Gunrock SSSP
468/528
468/924
852/528
852/924
DFS

 54

0.8 0.9 1 1.1
Average Power

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Sp

ee
du

p
P = 10K
P = 20K
P = 40K
Gunrock SSSP
468/528
468/924
852/528
852/924
DFS

0.8 0.9 1 1.1
Average Power

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Sp

ee
du

p
P = 10K
P = 20K
P = 40K
Gunrock SSSP
468/528
468/924
852/528
852/924
DFS

 55

0.8 0.9 1 1.1
Average Power

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Sp

ee
du

p
P = 10K
P = 20K
P = 40K
Gunrock SSSP
468/528
468/924
852/528
852/924
DFS

0.8 0.9 1 1.1
Average Power

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Sp

ee
du

p
P = 10K
P = 20K
P = 40K
Gunrock SSSP
468/528
468/924
852/528
852/924
DFS

 56

0.8 0.9 1 1.1
Average Power

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Sp

ee
du

p
P = 10K
P = 20K
P = 40K
Gunrock SSSP
468/528
468/924
852/528
852/924
DFS

0.8 0.9 1 1.1
Average Power

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Sp

ee
du

p
P = 10K
P = 20K
P = 40K
Gunrock SSSP
468/528
468/924
852/528
852/924
DFS

0.8 0.9 1 1.1
Average Power

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Sp

ee
du

p
P = 10K
P = 20K
P = 40K
Gunrock SSSP
468/528
468/924
852/528
852/924
DFS

0.8 0.9 1 1.1
Average Power

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Sp

ee
du

p
P = 10K
P = 20K
P = 40K
Gunrock SSSP
468/528
468/924
852/528
852/924
DFS

0.8 0.9 1 1.1
Average Power

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Sp

ee
du

p
P = 10K
P = 20K
P = 40K
Gunrock SSSP
468/528
468/924
852/528
852/924
DFS

0.8 0.9 1 1.1
Average Power

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Sp

ee
du

p
P = 10K
P = 20K
P = 40K
Gunrock SSSP
468/528
468/924
852/528
852/924
DFS

0.8 0.9 1 1.1
Average Power

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Sp

ee
du

p
P = 10K
P = 20K
P = 40K
Gunrock SSSP
468/528
468/924
852/528
852/924
DFS

(x=1, y=1):

Baseline near+far
& auto-DFS

0.8 0.9 1 1.1
Average Power

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Sp

ee
du

p
P = 10K
P = 20K
P = 40K
Gunrock SSSP
468/528
468/924
852/528
852/924
DFS

 57

0.8 0.9 1 1.1
Average Power

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Sp

ee
du

p
P = 10K
P = 20K
P = 40K
Gunrock SSSP
468/528
468/924
852/528
852/924
DFS

0.8 0.9 1 1.1
Average Power

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Sp

ee
du

p
P = 10K
P = 20K
P = 40K
Gunrock SSSP
468/528
468/924
852/528
852/924
DFS

0.8 0.9 1 1.1
Average Power

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Sp

ee
du

p
P = 10K
P = 20K
P = 40K
Gunrock SSSP
468/528
468/924
852/528
852/924
DFS

0.8 0.9 1 1.1
Average Power

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Sp

ee
du

p
P = 10K
P = 20K
P = 40K
Gunrock SSSP
468/528
468/924
852/528
852/924
DFS

0.8 0.9 1 1.1
Average Power

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Sp

ee
du

p
P = 10K
P = 20K
P = 40K
Gunrock SSSP
468/528
468/924
852/528
852/924
DFS

0.8 0.9 1 1.1
Average Power

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Sp

ee
du

p
P = 10K
P = 20K
P = 40K
Gunrock SSSP
468/528
468/924
852/528
852/924
DFS

Upper-left quadrant:
Speedup + less power
= Energy savings!

 58

0.8 0.9 1 1.1
Average Power

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Sp

ee
du

p
P = 10K
P = 20K
P = 40K
Gunrock SSSP
468/528
468/924
852/528
852/924
DFS

Self-tuning controller: solid lines
Can save energy!

 59

0.8 0.9 1 1.1 1.2
Average Power

0.4

0.6

0.8

1

1.2

1.4

1.6
Sp

ee
du

p
P = 100K
P = 400K
P = 1600K
Gunrock SSSP
468/528
468/924
852/528
852/924
DFS

But even when it can’t

save energy, it trades

time for power gracefully.

(Shown here: scale-free network)

 60

hpcgarage.org/uccs

Limitation 1 (open-question):

Choosing P is not the same as asking for
max power, which was our motivation.

There are limits on dynamic power measurement, which is needed to provide
feedback to this scheme. But it would likely be easy to incorporate because of the
model-based approach.

 61

http://hpcgarage.org/uccs

hpcgarage.org/uccs

Limitation 2 (observational):

Power and energy savings are not big.

We observed ~ 40% speedups and ~ 15% reductions in maximum power
consumption over hardware-only DFS. These savings cannot be bigger because the
system baseline or “constant” power is high — it is upwards of 50% or more of
maximum power, so the amount of dynamically controllable power is small.

 62

http://hpcgarage.org/uccs

hpcgarage.org/uccs

Conclusions:

The “dynamic SSSP” algorithm improves on near+far, even
when ignoring power. It’s easier to choose P than 𝛅, making this
SSSP easier to use.

The control-based scheme can be applied to any algorithm that
is a “sequence of (filter) banks” (e.g., others in Gunrock), though
the models may need specialization.

Energy savings are possible, especially when combined with
hardware-only techniques like DFS.

 63

http://hpcgarage.org/uccs

hpcgarage.org/uccs

Rich Vuduc
High-performance computing,

scalable parallel algorithms & software

 64

http://hpcgarage.org/uccs

