A power-tunable algorithm to compute single-source shortest paths

Sara Karamati • Jeffrey Young • Richard (Rich) Vuduc

November 17, 2017 - University of Colorado at Colorado Springs

Georgia	Gollege off
Tech	
Gornpufing	
Computional Science and Engineering	

hpcgarage

ACM Doctoral Dissertation Award Winner (1985)

ACM Doctoral Dissertation Award Winner (1985)

What physical constraint limits speed today?

What physical constrai it limits speed today?

COMPETITORA

SNAPDRAGONTM S4 PROCESSOR

Energy Power

(An aside on the relationship between computational performance and power)

ImageNet Dataset

IM』GENET

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., ... \& Fei-Fei, L. (2015). Imagenet large scale visual recognition challenge. arXiv preprint arXiv:1409.0575. [web]

(4 GPUs)
x (250 Watts / GPU)
x (1 week)
~ 0.6 billion Joules
~ 0.6 billion Joules

(4 GPUs)
x (250 Watts / GPU)
x (1 week)
~ 0.6 billion Joules
??
(1 brain) x (20 Watts / brain) x (1 year)
~ 0.6 billion Joules

Power Limits

$$
\text { Power } \equiv \frac{\text { Energy }}{\text { Time }}
$$

Sowne: Jee Whan Choi
Time (ms)

Jetson TK1

(

	Jetson TK1
CPU	ARM A15
(32-bit, $2.3 \mathrm{GHz}, 4+1$ cores)	

Power Limits

$$
\text { Power } \equiv \frac{\text { Energy }}{\text { Time }}
$$

Souse: Tee when Chi
Time (ms)

$$
\text { Power } \equiv \frac{\text { Energy }}{\text { Time }}
$$

Limit

or "cap", from a user or the system

Sowne: Jee whan Choi
Time (ms)

Power Limits

$$
\text { Power } \equiv \frac{\text { Energy }}{\text { Time }}
$$

Limit

or "cap", from a user or the system

Sowne: Jee whan Choi
Time (ms)

Power Limits

$$
\text { Power } \equiv \frac{\text { Eneryy }}{\text { Time }}
$$

Main question of this talk:

Can you design an algorithm in a way that you can control its power?

We are interested in "algorithmic" methods that complement techniques available in hardware, like DVFS, and systems software or middleware.

A first principle:

Relationships among time, energy, and power.

J. Choi, D. Bedard, R. Fowler, R. Vuduc. "A roofline model of energy." In IPDPS'13.

J. Choi, M. Dukhan, X. Liu, R. Vuduc. "Algorithmic time, energy, and power on candidate HPC building blocks." In IPDPS'14.

Time ~?

Energy ~ ?

Power = Energy / Time

Time ~ (\# of operations) / (number of processors)
Energy ~ (\# of operations)
Power $=$ Energy / Time \sim (number of processors) $=$ Speedup

Time ~ (\# of operations) / (number of processors)

Energy ~ (\# of operations)
Power = Energy / Time ~ (number of processors) = Speedup

Time ~ (\# of operations) / (number of processors)

Energy ~ (\# of operations)

Power $=$ Energy $/$ Time \sim (number of processors) $=$ Speedup

Time ~ (\# of operations) / (number of processors)
Energy ~ (\# of operations)
Power = Energy / Time ~ (number of processors) = Speedup

Time ~ (\# of operations) / (number of processors)
Energy ~ (\# of operations)
Power = Energy / Time \sim (number of processors) $=$ Speedup

Conclusion:
To save time \& energy: Must reduce work (\# ops or cost/op)
To save power: Must slow down (e.g., use fewer cores)

Time ~ (\# of operations) / (number of processors)
Energy ~ (\# of operations)
Power $=$ Energy $/$ Time $\sim($ number of processors) $=$ Speedup

Conclusion:
To save time \& energy: Must reduce work (\# ops or cost/op)
To save power: Must slow down (e.g., use fewer cores)

Execution energy is proportional to time (SSSP+GPU example)

Time ~ (\# of operations) / (number of processors)
Energy ~ (\# of operations)
Power = Energy / Time ~ (number of processors) = Speedup

Conclusion:
To save time \& energy: Must reduce work (\# ops or cost/op)
To save power: Must slow down (e.g., use fewer cores)

Main question of this talk:

Can you design an algorithm in a way that you can control its power?

We are interested in "algorithmic" methods that complement techniques available in hardware, like DVFS, and systems software or middleware.

Yes!

Example: A power-tunable graph algorithm to compute single-source shortest paths (SSSP).

Sara Karamati (Ph.D. student), Dr. Jeff Young (research faculty), R. Vuduc - new, unpublished work

- Baseline: Fastest, work-efficient "delta-stepping-like" method*
- Tunable work-parallelism tradeoff
- Tuned for a GPU and run on an NVIDIA Jetson TK1, which has tunable core frequencies (10x) and memory frequencies (3x)
- No preprocessing shortcuts, a la PHAST**

	Jetson TK1
CPU	ARM A15
	(32-bit, $2.3 \mathrm{GHz}, 4+1$ cores)
GPU	192 core Kepler, $326 \mathrm{GF} / \mathrm{s}$ (peak)
Memory	2 GB LPDDR3

[^0]
Baseline: Gunrock’s "Near+Far" algorithm

Baseline: Gunrock's "Near+Far" algorithm

Baseline: Gunrock's "Near+Far" algorithm

Baseline: Gunrock’s "Near+Far" algorithm

Baseline: Gunrock’s "Near+Far" algorithm

Baseline: Gunrock’s "Near+Far" algorithm

Baseline: Gunrock’s "Near+Far" algorithm

Baseline: Gunrock’s "Near+Far" algorithm

|Frontier| ~ parallelism

Baseline: Gunrock’s "Near+Far" algorithm

Power ~ Parallelism ~ Queue sizes

Baseline: Gunrock’s "Near+Far" algorithm

Power ~ Parallelism ~ Queue sizes

What is the effect of delta (δ)?

What is the effect of delta $(\delta) ?$

Delta $=1 \mathrm{e} 6$

What is the effect of delta (δ)?

Delta $=1 \mathrm{e} 5$

Observation:

Delta (δ) is a tuning parameter that can be used to control power-time tradeoffs.

But how to choose it? It is input-dependent. And, in the literature, it is always treated as a fixed a priori parameter with little guidance on its ideal value.

Sara's insight:

Treat $\boldsymbol{\delta}$ as a parameter to be learned and controlled, dynamically.

Recall: Near+Far == stages.

Intermediate frontier (queue) sizes

Add a controller!

Controller

P

Simple models between stages...

Controller

Try to estimate ("learn")

$$
\hat{X}_{k}^{(2)}=d \cdot X_{k}^{(1)}
$$

Estimator

$$
\hat{X}_{k}^{(2)}=d \cdot X_{k}^{(1)}
$$

Estimator

$$
\hat{X}_{k}^{(2)}=d \cdot X_{k}^{(1)}
$$

Parameter

Estimator

$$
\hat{X}_{k}^{(2)}=d \cdot X_{k}^{(1)}
$$

Loss

$$
\min _{d} \sum_{k}\left(X_{k}^{(2)}-\hat{X}_{k}^{(2)}\right)^{2}
$$

Parameter

Estimator

$$
\hat{X}_{k}^{(2)}=d \cdot X_{k}^{(1)}
$$

$$
\begin{aligned}
& \min _{d} \sum_{k}\left(X_{k}^{(2)}-\hat{X}_{k}^{(2)}\right)^{2} \\
& =\min _{d} \sum_{k}\left(X_{k}^{(2)}-d \cdot X_{k}^{(1)}\right)^{2}
\end{aligned}
$$

Parameter

Loss

$$
\min _{d} \sum_{k}\left(X_{k}^{(2)}-d \cdot X_{k}^{(1)}\right)^{2}-\lambda \ln d
$$

Regularize to stabilize the estimator during the early iterations and use online fitting method (e.g., stochastic gradient descent)

Constrain parallelism...

Constrain parallelism...

Constrain parallelism...

Constrain parallelism...

Estimate the effect of a change in $\boldsymbol{\delta}$

$\hat{X}_{k+1}^{(1)}=X_{k}^{(4)}+\alpha \cdot \Delta \delta_{k}$

Estimate the effect of a change in $\boldsymbol{\delta}$

$\hat{X}_{k+1}^{(1)}=X_{k}^{(4)}+\alpha \cdot \Delta \delta_{k}$

Estimator

Estimate the effect of a change in $\boldsymbol{\delta}$

$\hat{X}_{k+1}^{(1)}=X_{k}^{(4)}+\alpha \cdot \Delta \delta_{k}$

Estimator

Parameter

Cool feature:

User sets \boldsymbol{P}, the max parallelism, not $\boldsymbol{\delta}$!

The controller chooses the hard-to-set $\boldsymbol{\delta}$ fully automatically, adjusting it as frequently as every iteration. Not discussed: One can prove that the controller is bounded-input bounded-output (BIBO) stable, meaning frontier sizes will be "well-behaved."

Next question:

Does it work?

(Experimental results)

(road network)

Self-tuning controller: Tight distributions at a desired target

Baseline: High variance

Next question:

Can it save power or improve performance?

Compare against the baseline with a fixed δ and hardware-based dynamic frequency scaling.

Limitation 1 (open-question):

Choosing P is not the same as asking for max power, which was our motivation.

There are limits on dynamic power measurement, which is needed to provide feedback to this scheme. But it would likely be easy to incorporate because of the model-based approach.

Limitation 2 (observational):

Power and energy savings are not big.

We observed $\sim 40 \%$ speedups and $\sim 15 \%$ reductions in maximum power consumption over hardware-only DFS. These savings cannot be bigger because the system baseline or "constant" power is high - it is upwards of 50\% or more of maximum power, so the amount of dynamically controllable power is small.

The "dynamic SSSP" algorithm improves on near+far, even when ignoring power. It's easier to choose P than $\boldsymbol{\delta}$, making this SSSP easier to use.

The control-based scheme can be applied to any algorithm that is a "sequence of (filter) banks" (e.g., others in Gunrock), though the models may need specialization.

Energy savings are possible, especially when combined with hardware-only techniques like DFS.

Rich Vuduc

High-performance computing, scalable parallel algorithms \& software

Georgia
College of
Tech

[^0]: * Based on GunRock implementations of Davidson, Baxter, Garland, and Owens (IPDPS'14)
 ** Delling et al. "PHAST: Hardware-accelerated shortest path trees" (JPDC'10)

