45TH ADVANCED SUPERCOMPUTING ENVIRONMENT SEMINAR

Data-movement
These slides + links to papers:
acceleratOrS (DMXS) hpcgarage.org/apsZZLS

Richard (Rich) Vuduc — November 29, 2023

- o ~
4 il = I = I E = E = E = = = = = = = = = = = I I I I I = I BN I I N N N N N

- [| u
L m]
13

7Y ||
1 ® '
[|
1

»
‘\------------------------------------

http://hpcgarage.org/ase45

45TH ADVANCED SUPERCOMPUTING ENVIRONMENT SEMINAR

| Data-movement
These slides + links to papers:

accelerators (DMXs) hpcgarage.org/aseds hpc
garage

Richard (Rich) Vuduc — November 29, 2023

q
I
Y, A
y
- A D \
s ubl
" Rg . *
V.. a
. B
P d .
& p* 7 g
X 3
r D ‘
Y ! N\
§ (h

-
-
-

[;
. N P .
(x) N N g
‘J \
(N -
, &N 8
< .I ‘\
ol I '
. a e .
) I \|
A‘ A
} & o)
. I :
A A
D N I
»‘l I
;n' '
N . g EE BN EEEEEEER
YA |
’l
, .
, i
: | I
I3
ll\
i 3
' v
U I .’
. r .
i o
\ I
C
y I b
o} [
X I =z —=
-y P
\‘ ,/:
P .
€
.
N ‘|
-\ "

2N o 4y
N ,
RE H H H H H§ § §F 5§ 5§ 5§ 5§ 5§ 5§ 5§ 5§ 5§ 5§ 5§ 5§ 5§ 5§ 5§ 5§ H H H H H H H H =H =N = = 7.
3 d

= -~ = - /

- [— ‘_“EP_- -

fN etwo rk

http://hpcgarage.org/ase45

€

D
<
I
N,
»
»
D
.
)
.
4.

\
A\
.
|
o
o
\

o &

M2
o™
X ~
N

P oo
..

e, .
R , & .

,— o Ad
- _ o By ddi

=42 o -®
d %
H I B I = I I = N N NN N R CSEaA
M o o
.

d 1
K . 'of
, ,
'f'
\
e ?
.
’

-G
-

45TH ADVANCED SUPERCOMPUTING ENVIRONMENT SEMINAR

| Data-movement
accelerators (DMXs)

Host

g

Richard (Rich) Vuduc — November 29, 2023

These slides + links to papers:

hpcgarage.org/ase45

. b 4
N4 ,
Dl H H HE §H H § =H H 5 5§ 5 S5 5§ H 5§ H § H H H H H H H H H H H H H B H = =H = 7 .

Network

hpc
garage

http://hpcgarage.org/ase45

DATA-MOVEMENT ACCELERATORS (DMXS)

Y7 17 N.J. Boden et al. “Myrinet: a gigabit-per-second local area network.” IEEE Micro, 15(1):29-36,
Smart N ICS aré an Old 1995. doi:10.1109/40.342015

F. Petrini et al. “The Quadrics network: high-performance clustering technology.” IEEE Micro,
o 22(1):46-57,2002. doi:10.1109/40.988689
Id ea o0eo R. Brightwell et al. “SeaStar interconnect: balanced bandwidth for scalable performance.” IEEE
Micro, 26(3):41-47,2006. doi:10.1109/MM.2006.65

. o 10
32-bit. fast, static] " 200 MHz
memory
(SRAM)
Link FIFO| | FIFO

multiplexer queue| |[queue

. SDRAM Thread Microcode T l l
LANal chlp .' interface processor processor
| access engins Inputter
A
5 SR RN, ST) _ I N 64 Data bus
8_ - : N I I, A sk : : 100 MHz
e > Myrinet Packet |, DMA . %;l
€ m‘ interface interface | 'OCESSOT| gngine '
- Memory
> _ management unit Table Clock and
- N L and translation walk statistics
look-aside buffer engine registers
Timing and control signals e Four-way 474{28 S
set-associative cache < ¥
Ex".'a log PCl interface
peculiar 1 66 MHz
the bus
64

Figure 6. Host interface block diagrém.

Figure 1. Elan functional units.

to-end protocols that detect faults and auto- nal functional structure of Elan, shown in Fig-
matically retransmit packets. ure 1, centers around two primary processing

the switch itself. tO[al plrl count, intIOduce fewer internal COI’lﬂiC'[! engines: the microcode processor and the

https://doi.org/10.1109/40.342015
https://doi.org/10.1109/40.988689
https://doi.org/10.1109/MM.2006.65

DATA-MOVEMENT ACCELERATORS (DMXS)

| ... born again in a new
context.

Streaming data and latency-sensitive, in-transit processing are
the hallmarks of modern data center workloads.

E U-NEXT U-NEXTIZDWT ZLRL—L ®ELVADE 7o/t KEABHE B JPEN

P
e S
)

|

e

-
LA

L DB ZE{E I 5,

Today’s smartNIC landscape:
a panoply of designs

. NIC

mem

ypu

Today’s smartNIC landscape:
a panoply of designs

. NIC

ASICs,
FPGAS,
multicore CPUs,

GPUs, ...

ypu

| Today’s smartNIC landscape:

a panoply of designs
. NIC
— -:.-;:;l.;l;l;lilu;|:|.||ramu||||||||||||||||||;u.u'.1|||||||||;|||.||.|| L ® ASIC S, -
ypu

FPGAS,
BlueField-2 DPU - 2x 100Gb/s FHHL .
form factor multicore CPUS,

8 ——————— 45TH ASE SEMINAR (2023) - TOKYO Gl US, o o o

| Today’s smartNIC landscape:
a panoply of designs

. NIC

| R s

ypu

BlueField-2 DPU - 2x 100Gb/s FHHL 11 D P U "

form factor
(data processing unit)

DATA-MOVEMENT ACCELERATORS (DMXS)

Today’s smartNIC landscape:
a panoply of designs

_ . NIC
I 7§
S |
"
: </
: DRI TR St R T
ypu
. /1 Il
BlueField-2 DPU - 2x 100Gb/s EHHL DPU
form factor BF-2: 8-core Arm v8 A72 @ 2.6 GHz,
DDR4 4800 MT/s, HDR100 @ 100 Gb/s
10 45TH ASE SEMINAR (2023) - TOKYO BF-3: 1 6—COre Arm V8 A78 @ 225 GHZ,

DDRS5 5600 MT/s, NDR200 @ 200 Gb/s

NVIDIA DPU ROADMAP

Exponential Growth in Data Center Infrastructure Processing

1 O OX https://hc33.hotchips.org/assets/program/conference/day1/HC2021.NVIDIA.IdanBurstein.v08.norecording.pdf

BF-3

I R I I
t ol'pl gl gl 2 2 B
Sl | TR | | e e e e
o RTINS TNl il + fli o ol v |
E {iRh] = r
y—g{biiaiis] :
[

=
T L 11 I L]
E =1

10X 1.5 Top/s

400 Gb/s

e =i fies

BF-2
/ B transistors

0.7 Top/s
200 Gb/s

DOCA — ONE DEVELOPMENT ARCHITECTURE

2020 2022 2024

https://hc33.hotchips.org/assets/program/conference/day1/HC2021.NVIDIA.IdanBurstein.v08.norecording.pdf

Q: Are smartNICs for data
centers relevant to HPC?

Claim: Communication is
an inevitable bottleneck

Recall: “The” dominant paradigm of CS:
O(N*) — O(N)

Reduces : tewer (fl)ops, less storage

Recall: “The” dominant paradigm of CS:
O(N*) —{ O(N)

% time communicating

16

DATA-MOVEMENT ACCELERATORS (DMXS)

An Iron Law of Parallel and
Distributed Computation

A modern cluster or supercomputer is, to
first order, a collection of processing nodes.
Each node has a processor (“xPU") and a
two-level memory hierarchy. Nodes are
connected by a network.

As a program executes on this system, it
incurs two types of communication cost.

“Vertical” communication occurs in the
memory system between, say, RAM and
cache.

"Horizontal” communication occurs between
nodes across the network.

45TH ASE SEMINAR (2023) - TOKYO

1« xPU

g _

Two costs: Thetwork + Tmemory

17

DATA-MOVEMENT ACCELERATORS (DMXS)

An Iron Law of Parallel and
Distributed Computation

A modern cluster or supercomputer is, to
first order, a collection of processing nodes.
Each node has a processor (“xPU") and a
two-level memory hierarchy. Nodes are
connected by a network.

As a program executes on this system, it
incurs two types of communication cost.

"Vertical” communication occurs in the
memory system between, say, RAM and
cache.

"Horizontal” communication occurs between
nodes across the network.

45TH ASE SEMINAR (2023) - TOKYO

Two costs: Thetwork

18

DATA-MOVEMENT ACCELERATORS (DMXS)

An Iron Law of Parallel and
Distributed Computation

A modern cluster or supercomputer is, to
first order, a collection of processing nodes.
Each node has a processor (“xPU") and a
two-level memory hierarchy. Nodes are
connected by a network.

As a program executes on this system, it
incurs two types of communication cost.

“Vertical” communication occurs in the
memory system between, say, RAM and
cache.

“"Horizontal” communication occurs
between nodes across the network.

45TH ASE SEMINAR (2023) - TOKYO

Two costsy’

19

An Iron Law of Parallel and
Distributed Computation

A modern cluster or supercomputer is, to
first order, a collection of processing nodes.
Each node has a processor (“xPU") and a
two-level memory hierarchy. Nodes are
connected by a network.

As a program executes on this system, it
incurs two types of communication cost.

“Vertical” communication occurs in the
memory system between, say, RAM and
cache.

"Horizontal” communication occurs between
nodes across the network.

Compute time Network time

1 > max {Top7 1 mem, Tnet}

Memory time

20

An Iron Law of Parallel and
Distributed Computation

A modern cluster or supercomputer is, to
first order, a collection of processing nodes.
Each node has a processor (“xPU") and a
two-level memory hierarchy. Nodes are
connected by a network.

As a program executes on this system, it
incurs two types of communication cost.

“Vertical” communication occurs in the
memory system between, say, RAM and
cache.

"Horizontal” communication occurs between
nodes across the network.

T

Lopmax <1,

memory penalty

network penalty

Tmem Tnet

Top Top

21

An Iron Law of Parallel and
Distributed Computation

A modern cluster or supercomputer is, to
first order, a collection of processing nodes.
Each node has a processor (“xPU") and a
two-level memory hierarchy. Nodes are
connected by a network.

As a program executes on this system, it
incurs two types of communication cost.

“Vertical” communication occurs in the
memory system between, say, RAM and
cache.

"Horizontal” communication occurs between
nodes across the network.

T

1 op max

1,

Tmem Tnet

Top Top

oPS

time

22

An Iron Law of Parallel and
Distributed Computation

A modern cluster or supercomputer is, to
first order, a collection of processing nodes.
Each node has a processor (“xPU") and a
two-level memory hierarchy. Nodes are
connected by a network.

As a program executes on this system, it
incurs two types of communication cost.

“Vertical” communication occurs in the
memory system between, say, RAM and
cache.

"Horizontal” communication occurs between
nodes across the network.

T

words

time

1 op max

1,

Tmem Tnet

Top Top

23

An Iron Law of Parallel and
Distributed Computation

A modern cluster or supercomputer is, to
first order, a collection of processing nodes.
Each node has a processor (“xPU") and a
two-level memory hierarchy. Nodes are
connected by a network.

As a program executes on this system, it
incurs two types of communication cost.

“Vertical” communication occurs in the
memory system between, say, RAM and
cache.

"Horizontal” communication occurs between
nodes across the network.

T

1 op max

1,

Tmem Tnet

Top Top

24

DATA-MOVEMENT ACCELERATORS (DMXS)

An Iron Law of Parallel and
Distributed Computation

A modern cluster or supercomputer is, to
first order, a collection of processing nodes.
Each node has a processor (“xPU") and a
two-level memory hierarchy. Nodes are
connected by a network.

As a program executes on this system, it
incurs two types of communication cost.

“Vertical” communication occurs in the
memory system between, say, RAM and
cache.

"Horizontal” communication occurs between
nodes across the network.

45TH ASE SEMINAR (2023) - TOKYO

An Iron Law of Parallel and
Distributed Computation

memory penalty

Tmem . RO 1
Top BO g(Z)
Tnet - RO . hl (P)
Top Bhet ho (TL)

network penalty

25

Young & Vuduc (2016). “Finding balance in the post-Moore’s Law era.”

DATA-MOVEMENT ACCELERATORS (DMXS)

An Iron Law of Parallel and Lower is better

Distributed Computation (= "smaller” processors)

Processor-memory

Processor-network
op:byte

26 45TH ASE SEMINAR (2023) - TOKYO

Young & Vuduc (2016). “Finding balance in the post-Moore’s Law era.”

DATA-MOVEMENT ACCELERATORS (DMXS)

An Iron Law of Parallel and
Distributed Computation

Tmem N
N\
L op
Tnet -
N\
L op
Incsing functions
27 45TH ASE SEMINAR (2023) - TOKYO

Lower is better

(= "bigger” processors)

Young & Vuduc (2016). “Finding balance in the post-Moore’s Law era.”

DATA-MOVEMENT ACCELERATORS (DMXS)

An Iron Law of Parallel and Lower is better

Distributed Computation (= "bigger” processors)
Tmem ~
L op
Tnet -
L op

Network overhead

28 45TH ASE SEMINAR (2023) - TOKYO

Young & Vuduc (2016). “Finding balance in the post-Moore’s Law era.”

DATA-MOVEMENT ACCELERATORS (DMXS)

Memory and network
An Iron Law of Parallel and))
Distributed Computation communication trade off!

(under strong scaling)
memory penalty

Tmem -
L op
Tnet o
L op

29 45TH ASE SEMINAR (2023) - TOKYO

Young & Vuduc (2016). “Finding balance in the post-Moore’s Law era.”

DATA-MOVEMENT ACCELERATORS (DMXS)

An Iron Law of Parallel and H 19 her is better
Distributed Computation (= weak scaling)

Tmem RO 1
1 op By

X

1 net RO ,
Top B net {

X

30 45TH ASE SEMINAR (2023) - TOKYO

Young & Vuduc (2016). “Finding balance in the post-Moore’s Law era.”

Matrix multiplication (same peak op/s, strong scaling, ORNL Summit-like)

Big sockets Small sockets
Time
10° -
10° -
1072 -
Memory
107" -
10" 10 10° 10* 10° 10" 10 10° 10* 10°

of sockets

Matrix multiplication (same peak op/s, strong scaling, ORNL Summit-like)

Big sockets Small sockets

Time ‘\ Tradeoff

102 - Compute

10° - Network

107 -

Memory
107" -
10" 10 10° 10* 10° 10" 10 10° 10* 10°

of sockets

Matrix multiplication (same peak op/s, strong scaling, ORNL Summit-like)

Big sockets Small sockets
Time
102 - Compute
10° - Network
107° -
107" -

10" 10 10° 10* 10° 10" 10° 10° 10* 10°
of sockets

3D FFT (same peak op/s, strong scaling, ORNL Summit-like sockets)

Big sockets Small sockets
Time
10° -
10* -
Network
10° -
10° -
101 - Memory
10° -
Comput
10" 10° 10° 10* 10° 10" 10° 10° 10* 10°

of sockets

3D FFT (same peak op/s, strong scaling, ORNL Sum Communication tradeoffs

Big sockets Small sockets
Time
10° -
10* -
Network
10° -
10° -
101 - Memory
10° -
Comput
10" 10° 10° 10* 10° 10" 10° 10° 10* 10°

of sockets

3D FFT (same peak op/s, strong scaling, ORNL Summit-like sockets)

Big sockets Small sockets
Time

Network

Comput

10" 10° 10° 10* 10° 10’
of sockets

Communication is
inevitable & system
components help manage
scalability tradeoffs.

CONCLUSION SO FAR?

SmartNICs (DPUs)
asS DMXS (data-movement accelerators)

39

DPU-DMXs in
modern clusters

The basic building block of a distributed-

memory cluster or supercomputer is a node.

Each node includes a host, which is a
processor (xPU) + memory hierarchy.

The host can communicate with other hosts
via its NIC (network interface controller).

A network connects the nodes. The nodes

may be arranged in some topology, which

determines the network’s carrying capacity
and cost.

In a DPU, the NIC becomes “host-like” via
the addition of processing (ypu) and
memory.

. [T == : AR oo . 5
~ we A g . - '
E B O I I I O O I O O O R -

P
e
>
-
[|
[|
[|
[|
[|
[|
[|

7% -

S oy £ Py
BhOpn BN B B O E E m m m om = =g
= o S . o
o . & R §
- S T PR I DR U
.“-_-‘l . > C ga

|
]
V.
= |
|
]
]
|

Network

EEEEEEEPEEERN

40

Uses of DPUs,
actual and
envisioned

OPPORTUNITIES AND PITFALLS: SEE GRANT ET
AL.IPDRM'20 SURVEY, "RADD RUNTIMES"

® Accelerating network applications: packet
classification, traffic shaping, multicasting

® Network, storage, and sensor algorithms, e.g.,
distributed key-value stores, consensus algorithms,
computer vision

¢ Advanced runtimes: e.g., distributed resource and I/O
management, fault tolerance (see Ryan et al. IPDRM"20)

¢ HPC algorithms?

41

DPU algorithms

® MiniMD (S. Karamati et al., ""Smarter” NICs for faster molecular dynamics: a case study," IPDPS, 2022)

® Maxwell's equation (Current work)

| Our focus

e Platform: DPUs like BF2 & BF3, which are based on
general-purpose multicore CPUs

o Usage model: Oﬁ—path Computation (i.e., asynchronous,
independent progress) rather than on—path (i.e., "on-the-wire”

computation)

i NN ® Prog ramming model: |\/|u|tipl’09 ram MPI with the DPU
in "host mode” rather than any vendor-specitic model
or lower-level communication library (e.g., OpenSNAPI)

42

| Our focus

Off-path (async & indep threads)

® Platform: DPUs like BF2 & BF3, which are based on

general-purpose multicore CPUs
gi ® Usage model: Off-path computation (i.e., asynchronous,
threads independent progress) rather than on—path (i.e., "on-the-wire”
threads computation)
On-path (deadiine-driven task ® Programming model: Multiprogram MPI with the DPU

in “host mode” rather than any vendor-specific model
or lower-level communication library (e.g., OpenSNAPI)

A i
B &V '\"
e oif 290
e/,g

(S
'~
- N

/N

Inline

task
threads

43

Our focus

OpenSNAPI

* OpenSNAPI is a project of the UCF

Consortium
™%
| % ™% 35
. X -.I % == -.J
» Straight from the source: Sy | R

— “OpenSNAPI is a collaboration between industry, ey
laboratories and academia with the goal to create a IF"'
standard application programming interface (API) for
accessing the compute engines on the network, and

specifically on the smart network adapter. OpenSNAPI
allows application developers to leverage the network
compute cores in parallel to the host compute cores for
accelerating application runtime, and to perform operations
and processing closer to the data.”

44

® Platform: DPUs like BF2 & BF3, which are based on
general-purpose multicore CPUs

o Usage model: Oﬁ—path Computation (i.e., asynchronous,

independent progress) rather than on—path (i.e., "on-the-wire"
computation)

® Programming model: with DPU in
"host mode” rather than any vendor-specific model or
lower-level communication library (e.g., OpenSNAPI)

Sara Karamati

“In theory, theory and

A MiniMD case study

practice are the same.

In practice, they are not.”

45

S. Karamati (GT) et al. (Sandia, Queens U.; 2022) — “Smarter NICs for faster molecular dynamics: a case study.” doi:10.1109/IPDPS53621.2022.00063

https://doi.org/10.1109/IPDPS53621.2022.00063

Sara Karamati

DATA-MOVEMENT ACCELERATORS (DMXS)

| Target platform: NVIDIA (. veiano0 BF2

Node

’------------------------------------‘~

-2l

L e 8 AR PSP U, | ¥ &
VGRS

e AL YRR _
. Il = E E O E NN NN E N

EEEEEEE)EENEDN

A
S 1 SN
s, |l I I I = =N = = = = = = - Q) -
X - _. oA
o - "

'\------------------------------------

Network

|
|
V.
=
|
|
|
|

46 45TH ASE SEMINAR EEEEEEEEEENEN

S. Karamati (GT) et al. (Sandia, Queens U.; 2022) — “Smarter NICs for faster molecular dynamics: a case study.” doi:10.1109/IPDPS53621.2022.00063

https://doi.org/10.1109/IPDPS53621.2022.00063

Sara Karamati

DATA-MOVEMENT ACCELERATORS (DMXS)

| Target platform: NVIDIA (. veiano0 BF2

One host xPU (16 cores)

Mem

47 45TH ASE SEMINAR (2023) - TOKYO

S. Karamati (GT) et al. (Sandia, Queens U.; 2022) — “Smarter NICs for faster molecular dynamics: a case study.” doi:10.1109/IPDPS53621.2022.00063

https://doi.org/10.1109/IPDPS53621.2022.00063

Sara Karamati

DATA-MOVEMENT ACCELERATORS (DMXS)

| Target platform: NVIDIA (. veiano0 BF2

One host xPU (16 cores)

Mem

xPU

657 GF/s (fps4)

48 45TH ASE SEMINAR (2023) - TOKYO

S. Karamati (GT) et al. (Sandia, Queens U.; 2022) — “Smarter NICs for faster molecular dynamics: a case study.” doi:10.1109/IPDPS53621.2022.00063

https://doi.org/10.1109/IPDPS53621.2022.00063

Sara Karamati

DATA-MOVEMENT ACCELERATORS (DMXS)

Target platform: NVIDIA (née Mellanox) BFZ

One host xPU (16 cores)

Mem

xPU

657 GF/s (ips4)
76.8 GB/s

49 45TH ASE SEMINAR (2023) - TOKYO

S. Karamati (GT) et al. (Sandia, Queens U.; 2022) — “Smarter NICs for faster molecular dynamics: a case study.” doi:10.1109/IPDPS53621.2022.00063

https://doi.org/10.1109/IPDPS53621.2022.00063

Sara Karamati

DATA-MOVEMENT ACCELERATORS (DMXS)

| Target platform: NVIDIA (. veiano0 BF2

(16 cores) BF-2 yPUs (no host)

BlueField-2

mem

$

50 45TH ASE SEMINAR (2023) - TOKYO

S. Karamati (GT) et al. (Sandia, Queens U.; 2022) — “Smarter NICs for faster molecular dynamics: a case study.” doi:10.1109/IPDPS53621.2022.00063

https://doi.org/10.1109/IPDPS53621.2022.00063

Sara Karamati

DATA-MOVEMENT ACCELERATORS (DMXS)

| Target platform: NVIDIA (. veiano0 BF2

(16 cores) BF-2 yPUs (no host)

BlueField-2

mem

$

80 GF/s
25.6 GB/s

51 45TH ASE SEMINAR (2023) - TOKYO

S. Karamati (GT) et al. (Sandia, Queens U.; 2022) — “Smarter NICs for faster molecular dynamics: a case study.” doi:10.1109/IPDPS53621.2022.00063

https://doi.org/10.1109/IPDPS53621.2022.00063

Baseline MiniMD

MiniMD is a molecular dynamics proxy-app.
It calculates the position and velocity of a set
of interacting particles in discrete time steps

(iterations).

' o0 o
o
c,"...

e #9,"

52

S. Karamati (GT) et al. (Sandia, Queens U.; 2022) — “Smarter NICs for faster molecular dynamics: a case study.” doi:10.1109/IPDPS53621.2022.00063

https://doi.org/10.1109/IPDPS53621.2022.00063

-
]
.

ne
¢
.

.
* o 4

53

S. Karamati (GT) et al. (Sandia, Queens U.; 2022) — “Smarter NICs for faster molecular dynamics: a case study.” doi:10.1109/IPDPS53621.2022.00063

Baseline MiniMD

MiniMD is a molecular dynamics proxy-app.
It calculates the position and velocity of a set
of interacting particles in discrete time steps

(iterations).

In the distributed-memory setting, the
simulation domain is divided spatially
among MPI processes.

Every process owns its particles, computes
force on these particles and then updates
the position and velocity of these particles.

https://doi.org/10.1109/IPDPS53621.2022.00063

| Baseline MiniMD

In each iteration, every particle interacts with
others that lie within a some cutoff distance

(rc). A particle’s neighbor list stores
references to them.

=Y
@
O
Q)
=~

K)
e

e
.:3.' o ®
®
e
“»

A
. e

%'

S
%

LU

.éﬂ..;.“ 0.“
.
o'e

54

S. Karamati (GT) et al. (Sandia, Queens U.; 2022) — “Smarter NICs for faster molecular dynamics: a case study.” doi:10.1109/IPDPS53621.2022.00063

https://doi.org/10.1109/IPDPS53621.2022.00063

.QC
. (’.
.Qb o

* 9
!.." .’
(1)

55

S. Karamati (GT) et al. (Sandia, Queens U.; 2022) — “Smarter NICs for faster molecular dynamics: a case study.” doi:10.1109/IPDPS53621.2022.00063

Baseline MiniMD

In each iteration, every particle interacts with
others that lie within a some cutoff distance
(rc). A particle’s neighbor list stores
references to them.

The neighbor list must be updated as
particles move. But such updates are
expensive! So every list includes a buffer of
"extra” particles that lie within a surrounding
annulus, or "skin,” parameterized by its

thickness (A).

https://doi.org/10.1109/IPDPS53621.2022.00063

Baseline MiniMD

The cutoff distance (r.) and skin thickness (A)
imply the size of the interaction region just
P o outside the boundaries of each process.

.
"
. ™) "... .

Each process keeps a copy of particles in
that region.

56

S. Karamati (GT) et al. (Sandia, Queens U.; 2022) — “Smarter NICs for faster molecular dynamics: a case study.” doi:10.1109/IPDPS53621.2022.00063

https://doi.org/10.1109/IPDPS53621.2022.00063

“»
R

L4

)
®

f

» B
.

A
W

.

- ..
® »

-
...
o W

.

. : .‘.
A Rt
» 9

a®

oh

o

St o
® :
o'e

a*"e

.5.‘

®
&

57

S. Karamati (GT) et al. (Sandia, Queens U.; 2022) — “Smarter NICs for faster molecular dynamics: a case study.” doi:10.1109/IPDPS53621.2022.00063

Baseline MiniMD

Particles are reassigned to new processes as

they move through the spatial domain.

Neighbor list updates, boundary region
exchanges, and particles reassignment to
processes are triggered every so often via a
user-selected parameter (e.g., every k
iterations).

https://doi.org/10.1109/IPDPS53621.2022.00063

Update velocity (UV)

Baseline MiniMD

Update position (UX)

Neighbor
build iteration?

—

Communicate (C) Update border lists (UB)

Build neighbor lists (NB)
Compute force (FC)

Update velocity (UV)

Each task is parallelizable but the sequence is as shown by edges

58

S. Karamati (GT) et al. (Sandia, Queens U.; 2022) — “Smarter NICs for faster molecular dynamics: a case study.” doi:10.1109/IPDPS53621.2022.00063

https://doi.org/10.1109/IPDPS53621.2022.00063

Serial dependencies

Neighbor-list . l " i o
Generation
LESRRRREx(us| Ne | Fc |uvBRIc) Fc [uvBRc| Fc |uvExiusl NB | Fc [uv BB
Iteration i I+1 1+2 1+3 1+4
59

S. Karamati (GT) et al. (Sandia, Queens U.; 2022) — “Smarter NICs for faster molecular dynamics: a case study.” doi:10.1109/IPDPS53621.2022.00063

https://doi.org/10.1109/IPDPS53621.2022.00063

| Serial dependencies

Neighbor-list
Generation

Hoste + « » CHCHECINIECED - - -CIE- - -CHE- - -SEEEIRE- - -

. Iteration i i+1 ji+2 i+3 P i+4

> - : Lo L e A e L o S el o e i Lo o G G LT S el o i e fan S Lo O<Ragran _Juck S all oA e e g R Lo 0 <na LT el o = - Alp S Lo oo BRSO T el A ey - A B Lo pocas 43 10 e a g B HCEA S A Q@S - e Bt L _bos2 BHOPE & RO eD - T VR DL S s o BECPN e C W es - e TR BRSO 5 Al e - TTE TR B

K ! k+1 l k+2

60

S. Karamati (GT) et al. (Sandia, Queens U.; 2022) — “Smarter NICs for faster molecular dynamics: a case study.” doi:10.1109/IPDPS53621.2022.00063

https://doi.org/10.1109/IPDPS53621.2022.00063

| Serial dependencies

Computational work

(force computation)

Nelghbor_-llst " L/ ‘ k+2
Generation Nt
Hoste « + « CITCHECERIGCHN - - -SECHEN- - -GS - - -CCIIMECEN- - -
lteration i i+1 j+2 i+3 L i+4

61

S. Karamati (GT) et al. (Sandia, Queens U.; 2022) — “Smarter NICs for faster molecular dynamics: a case study.” doi:10.1109/IPDPS53621.2022.00063

https://doi.org/10.1109/IPDPS53621.2022.00063

work: force computation

| Serial dependencies

Computational work
(veloci update)

Nelghbor_-llst « | WE R | k4D
Generation P -
Lo aRRRRex(us ne | Fc uvBRic| Fc |uviic| Fc |uvERRIEXuB KB | FC |uv R
Iteration i i+1 ji+2 i+3 L i+4
62

S. Karamati (GT) et al. (Sandia, Queens U.; 2022) — “Smarter NICs for faster molecular dynamics: a case study.” doi:10.1109/IPDPS53621.2022.00063

https://doi.org/10.1109/IPDPS53621.2022.00063

work: force computation
work: update velocity

Serial dependencies

Data reorg
[neighbor-list (re)build]

Neighbor-list . l " i o
Generation
LESRRRREx(us| Ne | Fc |uvBRIc) Fc [uvBRc| Fc |uvExiusl NB | Fc [uv BB
Iteration i 1+1 1+2 1+3 1+4
63

S. Karamati (GT) et al. (Sandia, Queens U.; 2022) — “Smarter NICs for faster molecular dynamics: a case study.” doi:10.1109/IPDPS53621.2022.00063

https://doi.org/10.1109/IPDPS53621.2022.00063

work: force computation
work: update velocity
m neighbor-list rebuild

Serial dependencies

Neighbor-list . i " i o
Generation
LESRRRREx(us| Ne | Fc |uvBRIc) Fc [uvBRc| Fc |uvExiusl NB | Fc [uv BB
Iteration i 1+1 1+2 1+3 1+4
64

S. Karamati (GT) et al. (Sandia, Queens U.; 2022) — “Smarter NICs for faster molecular dynamics: a case study.” doi:10.1109/IPDPS53621.2022.00063

https://doi.org/10.1109/IPDPS53621.2022.00063

work: force computation
work: update velocity
m neighbor-list rebuild

Serial dependencies

Comm

[ghost zone communication]

Neighbor-list y l ‘1 i k+2
Generation Y
LESRRRREx(us| Ne | Fc |uvBRIc) Fc [uvBRc| Fc |uvExiusl NB | Fc [uv BB
Iteration i 1+1 1+2 1+3 1+4

65

S. Karamati (GT) et al. (Sandia, Queens U.; 2022) — “Smarter NICs for faster molecular dynamics: a case study.” doi:10.1109/IPDPS53621.2022.00063

https://doi.org/10.1109/IPDPS53621.2022.00063

work: force computation communication
work: update velocity
m neighbor-list rebuild

Serial dependencies

Data reorg + comm

[particles reallocation and border lists update]

Neighbor-list . l " ! o
Generation
LESRRRREx(us| Ne | Fc |uvBRIc) Fc [uvBRc| Fc |uvExiusl NB | Fc [uv BB
Iteration i 1+1 1+2 1+3 1+4
66

S. Karamati (GT) et al. (Sandia, Queens U.; 2022) — “Smarter NICs for faster molecular dynamics: a case study.” doi:10.1109/IPDPS53621.2022.00063

https://doi.org/10.1109/IPDPS53621.2022.00063

work: force computation communication
work: update velocity comm: update border lists

Brea king the dependencies IE] neighbor-list rebuild comm: particles reallocation

("Oft-path” algorithm)
Nelghbor_-llst K i k+1 ? k+2
Generation ‘

Bluefield 4\ 4\
Host « + « + CUTCICIN NN - - -CICHCN - - -CHEHET - - -SEREINEREN- - -

Iteration i i+1 i+2 i+3 i+4

67

S. Karamati (GT) et al. (Sandia, Queens U.; 2022) — “Smarter NICs for faster molecular dynamics: a case study.” doi:10.1109/IPDPS53621.2022.00063

https://doi.org/10.1109/IPDPS53621.2022.00063

work: force computation communication
work: update velocity comm: update border lists

Brea king the dependencies m neighbor-list rebuild comm: particles reallocation
("Oft-path” algorithm)

Neighbor-list

Generation . l 2

GRS - B - ST

i+1 i+2 i+3 : i+

Bluefield

Host ¢ o o o]

Iteration

68

S. Karamati (GT) et al. (Sandia, Queens U.; 2022) — “Smarter NICs for faster molecular dynamics: a case study.” doi:10.1109/IPDPS53621.2022.00063

https://doi.org/10.1109/IPDPS53621.2022.00063

work: force computation communication
work: update velocity comm: update border lists

Brea king the dependencies m neighbor-list rebuild comm: particles reallocation

("Oft-path” algorithm)
Nelghbor_-llst " ! " l o
Generation ; |

Iteration i i+1 i+2 i+3 i+4

69

S. Karamati (GT) et al. (Sandia, Queens U.; 2022) — “Smarter NICs for faster molecular dynamics: a case study.” doi:10.1109/IPDPS53621.2022.00063

https://doi.org/10.1109/IPDPS53621.2022.00063

Baseline
experiments

® System: 16 nodes, Infiniband HDR (100 Gbps)

® Hosts: (2-socket) x (16-core Intel Broadwell E5-2697A,
2.6 GHz) + (256 GiB DDR4 RAM, 2400 MHz)

® NICs per node

® 1 x NVIDIA ConnectX-6 HDR100 (100 Gbps)
InfiniBand/VPI adapters

e 1 x NVIDIA BlueField-2 SoC — (8-core ARMv8 A72,

"THOR" CLUSTER, MAINTAINED BY THE HPC-Al 2.3 GI—Z) + (1 6 GiB DDR4 RAM) T (HDR1 OO)
ADVISORY COUNCIL [LINK]

70

S. Karamati (GT) et al. (Sandia, Queens U.; 2022) — “Smarter NICs for faster molecular dynamics: a case study.” doi:10.1109/IPDPS53621.2022.00063

https://www.hpcadvisorycouncil.com/cluster_center.php
https://doi.org/10.1109/IPDPS53621.2022.00063

Restructured #MPI proc = 16
method ...

-
U
|

A

=
-

Ul
|

Higher is better

Time Improvement (%)
-

0 200 400 600 800
atoms (x103)

71

S. Karamati (GT) et al. (Sandia, Queens U.; 2022) — “Smarter NICs for faster molecular dynamics: a case study.” doi:10.1109/IPDPS53621.2022.00063

https://doi.org/10.1109/IPDPS53621.2022.00063

Restructured #MPI proc = 16
method is faster

-
U
|

We observe small, but largely uniform,
compared to host-
only execution with conventional NICs.

=
-

This improvement compares favorably
with the power increase on each node due
to BF2, which we estimate from sensors to
be as little as 6%.

Ul
|

Time Improvement (%)
-

0 200 400 600 800
atoms (x103)

72

S. Karamati (GT) et al. (Sandia, Queens U.; 2022) — “Smarter NICs for faster molecular dynamics: a case study.” doi:10.1109/IPDPS53621.2022.00063

Re-neighboring
Interval
1
2
5

10

https://doi.org/10.1109/IPDPS53621.2022.00063

SS

Hypothetlcal Multi-SmartNIC

a.k.a., revisiting the “iron law”

One host xPU (16 cores) BF-2 yPUs (no host)

BlueField-2
Mem

I $ I

xPU

657 GF/s (ips4) 80 GF/s
25.6 GB/s

73

S. Karamati (GT) et al. (Sandia, Queens U.; 2022) — “Smarter NICs for faster molecular dynamics: a case study.” doi:10.1109/IPDPS53621.2022.00063

https://doi.org/10.1109/IPDPS53621.2022.00063

"SMARTER” NICS FOR FASTER MOLECULAR DYNAMICS: A CASE STUDY

Hypothetical: Multi-SmartNIC

a.k.a., revisiting the “iron law”

(16 cores) 8 X BF-2 yPUS (no host)

BlueField-2 BlueField-2 BlueField-2 BlueField-2

BlueField-2 BlueField-2 BlueField-2 BlueField-2

640 GF/s
204 GB/s

(aggregate)

S. Karamati (GT) et al. (Sandia, Queens U.; 2022) — “Smarter NICs for faster molecular dynamics: a case study.” doi:10.1109/IPDPS53621.2022.00063

74

https://doi.org/10.1109/IPDPS53621.2022.00063

“SMARTER” NICS FOR FASTER MOLECULAR DYNAMICS: A CASE STUDY

Hypothetical: Multi-SmartNIC

a.k.a., revisiting the “iron law”

One host xPU (16 cores) 8 x BF-2 yPUs (no host)

~ 8.5 F:B ~ 3.1 F:B

75 KARAMATI ET AL., IPDPS’'22

S. Karamati (GT) et al. (Sandia, Queens U.; 2022) — “Smarter NICs for faster molecular dynamics: a case study.” doi:10.1109/IPDPS53621.2022.00063

https://doi.org/10.1109/IPDPS53621.2022.00063

DYNAMICS: A CASE ST

Hypothetlcal Multl-SmartNIC

a.k.a., revisiting the “iron law”

One host xPU (16 cores) 8 x BF-2 yPUs (no host)

Time = "1” Speedup ~ 1.7x

using all cores Real measurement on MiniMD!
(Similar for P3DFFT, SuperLU_DIST)

76 ——————— KARAMATI ET AL ., IPDPS’22

S. Karamati (GT) et al. (Sandia, Queens U.; 2022) — “Smarter NICs for faster molecular dynamics: a case study.” doi:10.1109/IPDPS53621.2022.00063

https://doi.org/10.1109/IPDPS53621.2022.00063

MIniEM (Muelu) -
Maxwell solver case study

Baseline Maxwell
Solver

Solve Phase

Maxwell multigrid solver from Muelu, an open-source software
library within the Trilinos project it < PreFineRelaxation()

Setup Phase

P1 =FormSpecialProlongator()

Form AH < PlT (1\/[1])*1I)1 + MlD()D*() n M])P] a <— Standard AMG chcle(AH) P < Standard AMG VCYCI@(A22)

u <— PreFineRelaxation()

Standard AMG Setup(An) Standard AMG Setup(A2»)

Bochev, Pavel B., et al. "An algebraic multigrid approach based on a compatible gauge
reformulation of Maxwell's equations." SIAM Journal on Scientific Computing 31.1 (2008)

u <— PreFineRelaxation()

Baseline Maxwell
Solver

Solve Phase

i < PreFineRelaxation()

Standard AMG Vcycle(AH) and Standard AMG
Vcycle(A22) operate independently and can be
executed in parallel for optimized performance.

a <— Standard AMG Vcycle(An) p <— Standard AMG Vcycle(A2?)

1 <— PreFineRelaxation()

i <— PreFineRelaxation()

Proposed Parallel
Execution of AMG Cycles

Host

Solve Phase

u <— PreFineRelaxation()

a <— Standard AMG Vcycle(An) p <— Standard AMG Vcycle(A2z)

i <— PreFineRelaxation()

i <— PreFineRelaxation()

AMG V-Cycles

V-CYCLE
Multigrid Methods Involve:

1. Smoothing: . SMOOTHER
o Utilizes simple iterative methods like Gauss- N

Seidel. - f -
o R . — |
educes oscillatory high-frequency error SMOOTHER ﬁ\ SMOOTHER
& RESIDUAL N\, % N\,
2. Coarse-grid Correction: ‘3-
® Transfers information to a coarser grid through \é\
restriction.
® Solves the coarse-grid system of equations. \
® Eliminates low-frequency error. DIRECT SOLVE
3. Interpolation:
® Transfers the solution back to the fine grid. Source: Multi grid V-cycle

Computational costs are primarily governed by sparse matrix operations

http://High-Performance%20Geometric%20Multi-Grid%20with%20GPU%20Acceleration

Experimental Testbed

Host Bluefield-3
Core Intel Broadwell E5-2697A Arm Cortex A-78
''''''''''''''''''''''''''''''''' #Sockets | 2 1
"""""""""""""""""""""" Cores/Socket | 1% 16
"""""""""""""""""""""""" Clock(GHz) | 26 228
"""""""" Private L1 DCache (percore) | 32kB 64kB
" Private L2 Dcache (percore) | 25%6KB 512kB
"""""""" Shared L3 Cache (pernode) | ~ sMB 16MB
'''''''''''''''''''''''''''''''''''''' DRAM | DDR4(4800MT/s) DDR5(5600MT/s)
"""""" Peak flop/s per socket (FP64) | 6566Gflops 288Gflop/s
~ Peak GB/s persocket | 768GB)s e921GBS

O O .
Matrix Representation and Matrix rows nnz
o [] o
Non-Zero Element Distribution Ar 4.065 346,665
Aoo 17,261 248,581
Histogram of Nonzero Elements per Row Histogram of Nonzero Elements per Row

700 - 8000 -

000 - 7000 - A22

500 - 6000 -
> > 12000—5:?=§E.
> > 5000 - 1Y
g 400° : o
> S 4000 -
Q Q
L= 300 - L

3000 -
200 -~
2000 -
100 - 1000 -+
0 - | O T | | T T T
20 40 60 80 100 120 140 160 5 8 10 12 14 16 18 20
Number of Nonzero Elements Number of Nonzero Elements

Observation: A2z is smaller but Ay stresses cache more, so it’s not clear a priori which to offload

MB/s

Comparative Benchmarking:
“"TUNED" STREAM benchmark on Host vs. Bluefield

Evaluating with Array of 20,000,000 elements, running each test 100 times.

“TUNED" STREAM benchmark on Host “TUNED" STREAM benchmark on Bluefield-3
100000 100000

/75000

75000

50000 50000

MB/s

25000 25000

Copy Scale Add Triad Copy Scale Add Triad

™ 1 OMP Thread 2 OMP Threads 4 OMP Threads W 1OMPThread || 2 OMP Threads 4 OMP Threads
B 8 OMP Threads B 16 OMP Threads B 32 OMP Threads B 8OMP Threads [16 OMP Threads

Comparative Benchmarking:
Sparse Matrix Vector Performance on Host vs. Bluefield

Evaluating with Matrix of 163,617 Rows and 13,662,045 nnz Elements

The execution of SPMV (OpenMP) The execution of SPMV (MPI)

Host BF3 Host BF3

B 1OMP Thread | 2 OMP Threads 4 OMP Threads ' 1 MPI Process " 2 MPI Processes 4 MPI Processes
B 8OMP Threads B 16 OMP Threads B 32 OMP Threads B 8 MPI Processes [16 MPI Processes [32 MPI Processes

Preliminary results: End-to-End Solve-Phase Times
for miniEM: Host vs. Host + BlueField3

Times shown are end-to-end solver times.

| #Host Cores / #BF3 Host-only Time H+BF Time Relative
Problem Size | |

; Cores ~ (seconds) = (seconds) Scaling

120 256 /128 85358 761103 1.12
""""""""""""""""""""" 120 | 128/64 137062 129928 105
""""""""""""""""""""" 120 | e4/32 20767 213919 103 =
""""""""""""""""""""" 80 | ©256/128 . 59862 509477 147 .
""""""""""""""""""""" 80 | 128/64 720195 635482 143
'''''''''''''''''''''''''''''' 80 | 64/32 = 953597 87.6009 109
"""""""""""""""""""""" 60 | 256/128 . 385208 312498 123 .
""""""""""""""""""""" 60 | 128/64 = 42619 375846 143
'''''''''''''''''''''''''''' 60 | e4/32 514106 464185 111

87

Summary

Communication is fundamental and
inevitable, so anything that addresses
it should be pursued vigorously.

Restructuring algorithms, especially
increasing asynchrony, can exploit
smartNICs in HPC. We are pursuing a
variety of candidates, including
distributed time-tiled stencils, AMR,
novel collectives, among others.

Many open questions remain,
regarding other techniques,
programming, runtimes, and
performance modeling.

A

. NIC

mem

cpu

Asynchronous I/O in BlueField Target using OpenMP

pragma omp parallel
pragma omp single

1

pragma omp task
pragma omp target nowait

{
for (1 = 0; 1 < 5; ++1)
printf(“hola - %05d\n”, 1i);
¥
pragma omp task
{
for (j = 0; j < 5; ++3)
printf(“adios - %06d\n”, Jj);
}
}

Barcelona

Supercomputing

Center

Centro Nacional de Supercomputacion

102

Asynchronous I/O in BlueField Target using OpenMP

pragma omp parallel
pragma omp single

1

pragma omp task
pragma omp target nowait

{
for (1 = 0; 1 < 5; ++1)
printf(“hola - %05d\n”, 1i);
¥
pragma omp task
{
for (j = 0; j < 5; ++3)
printf(“adios - %06d\n”, Jj);
}
}

Barcelona

Supercomputing

Center

Centro Nacional de Supercomputacion

102

Asynchronous I/O in BlueField Target using OpenMP

pragma omp parallel
pragma omp single

{ uthmanhere@jupiter030:~/test_openmp/build$./async
pragna onp task e
pragma omp target nowalt ~dio - 000002
{ adio - 000003
for (i = 0; i < 5; ++1) adio - 000004 N -
printf(“hola - %05d\n”, 1i); uthmanhere@jupiter030:~/test_openmp/build$ J
pragma omp task
{ uthmanhere@jupiterbf030:~% hola - 00000
for (j = @; j < 5; ++j) hola - 00001

printf(“adio - %06d\n”, j); EE%Z T o000

hola - 00004

—

Barcelona

Supercomputing

Center

Centro Nacional de Suparcomputacion

102

91

Summary

Communication is fundamental and
inevitable, so anything that addresses
it should be pursued vigorously.

Restructuring algorithms, especially
increasing asynchrony, can exploit
smartNICs in HPC. We are pursuing a
variety of candidates, including
distributed time-tiled stencils, AMR,
novel collectives, among others.

Many open questions remain,
regarding other techniques,
programming, runtimes, and
performance modeling.

A

. NIC

mem

cpu

Director’s cut

45TH ASE SEMINAR (2023) - TOKYO

Gregory Abowd (2016). "Beyond Weiser: From ubiquitous
computing to collective computing.” DOI: 10.1109/MC.2016.22

Four “generations” of

computing

OUTLOOK

TABLE 1. A framework for comparing computing generations, inspired by Mark Weiser.

Application
Human-computer
Generation | Time frame ratio Canonical device Initial Follow-on
1 Mid-1930s Many-1 Mainframe Scientific calculation Data processing
2 Late 1960s 1-1 PC Spreadsheet Database management,
document processing
3 Late 1980s 1-many Inch/foot/yard Calendar and contact Location-based services,
management, human-— social media, app ecosystem,
human communication education
4 Mid-2000s Many—many Cloud/crowd/shroud | Personal navigation and Health advisors, educational
entertainment assistants, supply chain logistics

https://dx.doi.org/10.1109/MC.2016.22

THE FUTURE IS SPARSE @ SC23

Four “generations” of
computing

Gregory Abowd (2016). "Beyond Weiser: From ubiquitous
computing to collective computing.” DOI: 10.1109/MC.2016.22

OUTLOOK

TABLE 1. A framework for comparing computing generations, inspired by Mark Weiser.

. '-'5' A ’ > - § N = _ ' <o - = " 5 _.,s- g s 5 5 3 - =S) £ a - - “. - - ,.- = > 9 = 3 - S - B it _ - TS -
o . - > . =) o . o . A > > = . o - 5 B — > = - P - . - = = - S - . = -

Application

g Human-computer
% Generation | Time frame ratio Canonical device Initial Follow-on

4 1 Mid-1930s Many-1 Mainframe Scientific calculation Data processing ¥

| Database management,
document processing

2 | late1960s |11 |PC | Spreadsheet

3 Late 1980s 1-many Inch/foot/yard Calendar and contact Location-based services,
management, human-— social media, app ecosystem,
human communication education

4 Mid-2000s Many—many Cloud/crowd/shroud | Personal navigation and Health advisors, educational
entertainment assistants, supply chain logistics

https://dx.doi.org/10.1109/MC.2016.22

THE FUTURE IS SPARSE @ SC23

computing

OUTLOOK

Four “generations” of

Gregory Abowd (2016). "Beyond Weiser: From ubiquitous
computing to collective computing.” DOI: 10.1109/MC.2016.22

TABLE 1. A framework for comparing computing generations, inspired by Mark Weiser.

Generation | Time frame

Human-computer
ratio

Canonical device

Application

Initial

Follow-on

1 Mid-1930s

[P,

2 | Late1960s

3 Late 1980s

4 Mid-2000s

P f = e g et s . m .o o e _ ; -
7> S e e 2 T F S e s K Sy e e ue
- % . -, o . N - - O Ve a 4 st >

O S T
= ': -

M

ny—1

._.&',

1-many

Many—many

b

pe-. . s e s Ay s o PR R - P 5 . >
T, «a -—— T -y T\ -V > Nl - D = - - —
(2R - —v T RS AL ardk S

. R

. ' » = » =
o - . en -4 g " > - —5
o- . 2 g ,",_-..-, ,;', RN v o> - _ > 2 ps

PC

Mainframe

- oeom. - RE Do Ve

Inch/foot/yard

Cloud/crowd/shroud

- 4 . - - > . > -
o) D@l e 2 e Cre<iT oa sy oy o

Scientific calculation

Calendar and contact
management, human-—
human communication

Personal navigation and
entertainment

- . L, o R B o ame €. s o I - o - g o o el DA h - LS . S P
:r-_-— - -?o -m: l'.;l_- -. -~ w—. L IR ’_-"(‘ :.—’:‘? - :-w_-:,-_ ~ -..o -ml.?“—‘_-“- w: Q %5~ _‘l\vr.s-“wz _? -:'.‘_--'.‘_ ~-
’ e .o . - . \ ’ - T -) .

\ . N oo ° .

Data processing

A Al il PR e PN
I~ &L .- A o~ 7 AT A 1 o 7 - IS s 1> s Oae L T iy . 23

Database management,
document processing

Location-based services,
social media, app ecosystem,
education

Health advisors, educational
assistants, supply chain logistics

ok > e —m—— s - — e — ——— —— e — = — R TR S \N
S TERZ . S m LTI WS St = T - ."‘;-’\-\\-s-.‘.vw-(-‘.s—mdnvz-\‘_ - SRS
- - - [- - - _/e

- oc— 9 - =

https://dx.doi.org/10.1109/MC.2016.22

94

Our foci (gaps)

SEE PART 3 OF THIS TALK

e Platform: D
purpose Mmu

PUs like B

ticore CP

-2, which are based on general-

Js (e.g., generalizing INCA)

® Usage model: Off-path computation (i.e., asynchronous,

independent progress) rather than on—path (i.e., "on-the-wire”
computation, e.g., sPIN)

e Applications: HPC algorithms and proxy-apps with
aggressive restructuring rather than relying on

middleware, “basic” porting, or simple offload schemes
(e.g., BluesMPI, Williams et al. PENNANT study, which found no

speedup)

® Programming model: Multiprogram MPI with the DPU
in "host mode” rather than any vendor-specitic model

or lower-level communication library (e.g., OpenSNAPI)

95

SMARTER ALGORITHMS FOR SMARTER NETWORKS?

Our foci (gaps)

il LT ST

SEE PART 3 OF THIS TALK

PART 1: SMARTNIC TECHNOLOGIES

Platform: DPUs like BF2, which are based on general-
purpose multicore CPUs (e.g., generalizing INCA)

Usage model: Oft-path computation (i.e., asynchronous,

independent progress) rather than on—path (i.e., "on-the-wire”
computation, e.g., sPIN)

® Applications: HPC algorithms and proxy-apps with

aggressive restructuring rather than relying on

middleware, “basic” porting, or simple offload schemes
(e.g., BluesMPI, Williams et al. PENNANT study, which found no
speedup)

Programming model: Multiprogram MPI| with the DPU
in “host mode” rather than any vendor-specific model
or lower-level communication library (e.g., OpenSNAPI)

96

Our foci (gaps)

Plattorm: DPUs like BF2, which are based on general-
purpose multicore CPUs (e.g., generalizing INCA)

Usage model: computation (i.e., asynchronous,
independent progress) rather than on—path (i.e., "on-the-wire”

computation, e.g., sPIN)

® Applications: HPC algorithms and proxy-apps with

aggressive restructuring rather than relying on

middleware, “basic” porting, or simple offload schemes
(e.g., BluesMPI, Williams et al. PENNANT study, which found no
speedup)

Programming model: Multiprogram MPI| with the DPU
in “host mode” rather than any vendor-specific model
or lower-level communication library (e.g., OpenSNAPI)

96

Our foci (gaps)

Off-path (async & indep threads)

Plattorm: DPUs like BF2, which are based on general-
purpose multicore CPUs (e.g., generalizing INCA)

Usage model: computation (i.e., asynchronous,
independent progress) rather than on—path (i.e., "on-the-wire”

computation, e.g., sPIN)

® Applications: HPC algorithms and proxy-apps with

aggressive restructuring rather than relying on

middleware, “basic” porting, or simple offload schemes
(e.g., BluesMPI, Williams et al. PENNANT study, which found no
speedup)

Programming model: Multiprogram MPI| with the DPU
in “host mode” rather than any vendor-specific model
or lower-level communication library (e.g., OpenSNAPI)

SMARTER ALGORITHMS FOR SMARTER NETWORKS?

Our foci (gaps)

Off-path (async & indep threads)

|

threads

threads

96 PART 1: SMARTNIC TECHNOLOGIES

Plattorm: DPUs like BF2, which are based on general-
purpose multicore CPUs (e.g., generalizing INCA)

Usage model: Off-path computation (i.e., asynchronous,
independent progress) rather than on—path (i.e., "on-the-wire”

computation, e.g., sPIN)

® Applications: HPC algorithms and proxy-apps with

aggressive restructuring rather than relying on

middleware, “basic” porting, or simple offload schemes
(e.g., BluesMPI, Williams et al. PENNANT study, which found no
speedup)

Programming model: Multiprogram MPI| with the DPU
in “host mode” rather than any vendor-specific model
or lower-level communication library (e.g., OpenSNAPI)

SMARTER ALGORITHMS FOR SMARTER NETWORKS?

Our foci (gaps)

Off-path (async & indep threads)

|

threads

threads

On-path (deadline-driven task)

PART 1: SMARTNIC TECHNOLOGIES

Plattorm: DPUs like BF2, which are based on general-
purpose multicore CPUs (e.g., generalizing INCA)

Usage model: Off-path Computation (i.e., asynchronous,

independent progress) rather than on-path (i.e., “on-the-wire"
computation, e.g., sPIN)

® Applications: HPC algorithms and proxy-apps with

aggressive restructuring rather than relying on

middleware, “basic” porting, or simple offload schemes
(e.g., BluesMPI, Williams et al. PENNANT study, which found no
speedup)

Programming model: Multiprogram MPI| with the DPU
in "host mode” rather than any vendor-specific model
or lower-level communication library (e.g., OpenSNAPI)

SMARTER ALGORITHMS FOR SMARTER NETWORKS?

Our foci (gaps)

Off-path (async & indep threads)

|

threads

threads

On-path (deadline-driven task)

T
B &V '\"
e oif 290
g,»{

(S
- N
/N

Inline

task
threads

PART 1: SMARTNIC TECHNOLOGIES

Plattorm: DPUs like BF2, which are based on general-
purpose multicore CPUs (e.g., generalizing INCA)

Usage model: Off-path Computation (i.e., asynchronous,

independent progress) rather than on-path (i.e., “on-the-wire"
computation, e.g., sPIN)

® Applications: HPC algorithms and proxy-apps with

aggressive restructuring rather than relying on

middleware, “basic” porting, or simple offload schemes
(e.g., BluesMPI, Williams et al. PENNANT study, which found no
speedup)

Programming model: Multiprogram MPI| with the DPU
in "host mode” rather than any vendor-specific model
or lower-level communication library (e.g., OpenSNAPI)

Our foci (gaps)

1. Host leader gathers
buffer address & keys

Collective __,

Algorithm —

RDMA info

2. Offloading task object to
worker group leader

3. Forwarding task object
to other workers

[1
/ l \ @
Collective Algorithm RDMA info

4. Workers unpack h

task object, read
metadata

W,
RDMA Read

RDMA Write

5. Workers make progress
on the collective

& & &
= &3 =
Wl Wz W3

6. Notify host processes
of completion

Fig. 4. BluesMPI procedure to offload non-blocking Alltoall collective operation to the
worker processes on the Smart NIC. Step 0 is not included in this figure.

SEE PART 3 OF THIS TALK

97

® Platform: DPUs like BF2, which are based on general-
purpose multicore CPUs (e.g., generalizing INCA)

® Usage model: Off-path computation (i.e., asynchronous,
independent progress) rather than on—path (i.e., "on-the-wire”

computation, e.g., sPIN)

e Applications: with
rather than relying on

middleware, “basic” porting, or simple offload schemes
(e.g., BluesMPI, Williams et al. PENNANT study, which found no
speedup)

® Programming model: Multiprogram MPI with the DPU
in "host mode” rather than any vendor-specitic model
or lower-level communication library (e.g., OpenSNAPI)

Our foci (gaps)

® Platform: DPUs like BF2, which are based on general-
purpose multicore CPUs (e.g., generalizing INCA)

o . _ . :
Usage model: Oft-path computation (i.e., asynchronous,
independent progress) rather than on—path (i.e., "on-the-wire”

« OpenSNAPI is a project of the UCF Computationl e.g., sPIN)
Consortium
| B T
1 HNBT ® Applications: HPC algorithms and proxy-apps with
- Straight from the source: b il : . :
— “OpenSNAPI is a collaboration between industry, Py agg ressive reStrU CtU Il ﬂg rather thaﬂ re|y| ﬂg on
laboratories aljd e?cademia With_the_goal to create a IF" . " - . i
standerd appfcation progremming nterface (AP for middleware, “basic” porting, or simple offload schemes
ficall th rt network adapter. OpenSNAPI Tl .
allows application developers to leverage the network (e.g., BluesMPI, Williams et al. PENNANT study, which found no
compute cores in parallel to the host compute cores for
accelerating application runtime, and to perform operations S p ee d u p)

and processing closer to the data.”

¢ Programming model.: with DPU in
"host mode” rather than any vendor-specitic model or
lower-level communication library (e.g., OpenSNAPI)

SEE PART 3 OF THIS TALK

98

“SMARTER” NICS FOR FASTER MOLECULAR DYNAMICS: A CASE STUDY

Anatomy of a Node
supercomputer

The basic building block of a distributed-
memory cluster or supercomputer is a node.

NIC

DY

- o W, 1D 2
VNGNS

Each node includes a host, which is a

processor (xPU) + memory hierarchy.

The host can communicate with other hosts

- == : BARE oo . 5
~ xe A AR . - - TS
E B O I I I O O I O O O R -

EEEEEEPEERRN

via its NIC (network interface controller).

J Y. - P>
Q Il B = = = = =N =N =N =N = = = =g - 8
EP a2

titca.

< "~ f
PP 77 on

A network connects the nodes. The nodes e)
may be arranged in some topology, which . e

determines the network’s carrying capacity Netwo rk
and cost. EEEEEEEEESR

EEELINEERN

100

“SMARTER” NICS FOR FASTER MOLECULAR DYNAMICS: A CASE STUDY

DPUs in modern
clusters

The basic building block of a distributed-
memory cluster or supercomputer is a node.

Each node includes a host, which is a
processor (xPU) + memory hierarchy.

The host can communicate with other hosts
via its NIC (network interface controller).

A network connects the nodes. The nodes

may be arranged in some topology, which

determines the network’s carrying capacity
and cost.

In a smartNIC, the NIC becomes "host-like”
via the addition of processing (ypu) and
memory.

. [T == : AR oo . 5
~ we A g . - '
E B O I I I O O I O O O R -

P
e
>
-
[|
[|
[|
[|
[|
[|
[|

DT

9 'A’u_' Py
RS, BN EN BN EN BN BN BN BN BN BN BN BN B e~ 9
‘54:,;‘..,‘ . .-~ e

- - oo VS e
DRREER: - (aasra - £ DA
."-_-‘l . r . "'

|
]
V.
= |
|
]
]
|

Network

EEEEEEEPEEERN

Hybrid MPI/OpenMP

performance results #MPI proc = 16
26 _
Lower is better

’G 25 _
A
p
-g v
— 24

23 _

1 2 4 8 16 32

#OMP threads on host

101

102

Hybrid MPI/OpenMP
performance results

Our algorithm works best when it can
completely hide the force computation time
on BlueField.

The degree of achievable overlap depends
on the relative computational power of the

host and BlueField.

The knee of each curve indicates where the
running times of neighbor-build on the host
and force-compute on the BlueField are
closest.

Thread synchronization overhead in the force
computation routine causes the performance
not to scale proportionally to the number of
threads.

#MPI proc = 16

2 4 38 16

#OMP threads on host

32

#OMP threads on bf
0

o ~ N

103

Hybrid MPI/OpenMP
performance results

Our algorithm works best when it can
completely hide the force computation time
on BlueField.

The degree of achievable overlap depends
on the relative computational power of the

host and BlueField.

The indicates where the
running times of neighbor-build on the host
and force-compute on the BlueField are
closest.

Thread synchronization overhead in the force
computation routine causes the performance
not to scale proportionally to the number of
threads.

#MPI| proc = 16

2 4 38 16

#OMP threads on host

32

#OMP threads on bf
0

o B~ N

104

Hybrid MPI/OpenMP
performance results

Our algorithm works best when it can
completely hide the force computation time
on BlueField.

The degree of achievable overlap depends
on the relative computational power of the

host and BlueField.

The knee of each curve indicates where the
running times of neighbor-build on the host
and force-compute on the BlueField are
closest.

overhead in the force
computation routine causes the performance
not to scale proportionally to the number of
threads.

Time (sec)

70 -

@)
o
|

U1
o
|

D
)
|

30 -

#MPI| proc = 16

2.5x faster

2 4 8 16

#OMP threads on host

32

1core

8 cores

| An explanatory
performance model

ttotal

105

| An explanatory
performance model

Tiotal = (

&>

) X

re-neighboring + tremain

ttotal

106

&>

| An explanatory
performance model

tiotal = (tn + trc) X #re-neighboring + tremain

&>

&>

- SEMCNIGERET- -

N tFC

Hoste

el v | < B < AR =]
tFC

N

ttotal

107

| An explanatory
performance model

tF=1Tex + trc + tc

TEX trc |Ye

<> > <>
Biuetied + « » CHICIICINIET - - -CHZEEN- - -GG - - -SEECEECEN- - -

108

| An explanatory
performance model

toff-path = T

Bluefield

M >

toff-path

109

| An explanatory
performance model

toff-path = + () X #re-neighboring

Bluefield

M >

toff-path

110

| An explanatory
performance model

toff-path = + max(tn, tr) X #re-neighboring
Bluefield E E
ou- - -SEHTE - - CIEAM- - SR -SEETE [0
; ™ ;
toverlap max(tN) toverlap max(tN)

“ >

toff-path

111

Predictive power of our

performance model #MPI proc = 16
The model can closely predict the algorithm 70~
runtime.
60 -
(8)
Q
W 50-
O
S
= 40 - :
- == 4 cores on BlueField
30 -
— 8 cores on BlueField
20 | | & | | | | |
1 2 4 8 16 32

#OMP threads on host

112

| How about a DPU with more
performant core?

Actual system Hypothetical (modeled)

Host Host

BlueField-2

Auxiliary node

113

How about a DPU with more
performant core?

Actual system

BlueField-2

mem

_ $

ypu

114

| How about a DPU with more
performant core?

Actual system

BlueField-2

_ $

80 GF/s peak (8 cores)

How about a DPU with more
performant core?

Auxiliary node
mem

$

-

116

| How about a DPU with more
performant core?

Hypothetical (modeled)

Auxiliary node
mem

-

40 GF/s peak (1 core)

117

| How about a DPU with more
performant core?

Hypothetical (modeled)

Auxiliary node
e

_ $

-l

80 GF/s peak (8 cores) 40 GF/s peak (1 core)

Same predicted performance!

(due to no sync overhead on aux node)

#MPI proc = 16

Hypothetical (modeled) o
N 80 GF/s peak (8 cores)
Auxiliary node
& 50-
— $ qé
VPUD " 40 -
o

40 GF/s peak (1 core) 1 2 4 & 16 32

#OMP_threads on host

119

120

Other highlights from
the paper

Conducted performance analysis using the
and the “off-

the-shelt” version of MiniMD to understand
the opportunities and limitations presented
by the BlueField for potential HPC

applications.

Verified that the computed simulation results

for the restructured method are still within an
. in terms of

calculated physical quantities.

TABLE 1
EXPERIMENTAL SYSTEM CONFIGURATION. THE TESTBED IS A 32-NODE CLUSTER

BLUEFIELD. EACH ROW OF THE TABLE BELOW IS A PER-NODE CONFIGURATION.

» WHERE EACH NODE CONTAINS A DUAL-SOCKET X86 HOST AND ONE
THE LINK BANDWIDTH 1S 12.5 GB/s (INFINIBAND HDR AT 100 Gbps).

Host Sockets x CPU
Thor 2 x Intel Broadwell (E5-2697A), 2.6 GHz

Cores Peak flop/s Peak GB/s
per socket per socket Memory per socket Device Type

ThorBF 1 x Arm A72, 2.5GHz

16 656.6Gflop/s 256 GiB 76.8 GB/s Host CPU
8 80.0 Gflop/s 16GiB 25.6GB/s BlueField P-Series

Normalized OSU MPp) Latency
1.8

BF-to-BF Latency
Host-to-Host Latency

Host -to-BF Latency
Host=to-Host Latency

1.6

-
IS

Normalized Latency
- -
=) N

o
©

0.6

20 25 210 215 220

Data Size

(a) OSU MPI latency
Fig. 3. OSU MPI latency and bandwidth tests, relative to

Normalized OSU Mp| Bandwidth

BF - to-BF Bandwidth
Host=to-Host Bandwid
Hos t — to-BF Bandwidth
Host=to-Host Bandwidth

1.6

Normalized Bandwidth

25 210 215 220
Data Size

(b) OSU MPI bandwidth

conventional host-to-host communication: BF-to-BF latency is higher, and bandwidth lower, than

host-to-host communication for message sizes under 16 KiB. (Data sizes are in bytes.)

Normalized OSU Mp| Multiple Bandwidth / Message Rate

BF - to-BF Message Rate

Host=to-Fost Méssage Rate

Normalized Message Rate
O O
o o o [N} i o o

o
IS

210

Data Size

215 220

(a) OSU MPI multiple message rate

Fig. 4. OSU MPI multiple messa
around 16 KiB occurs when BE-

The execution time breakdown of MiniMD, in the host-only
setting, appears in Fig. 7. Here, to, is the overall execution
time, #ce is the time consumed by the force_compute()
routine, tneigh 1S the time consumed for the neighbor_build()
routine, and ¢cqmm is cumulative time spent on the exchange(),
border(), and communicate() routines. The time tcomm 1S
not pure communication time; it also includes the time re-
quired to prepare the data for communication. We can see
that ¢comm has a small share of the overall execution time.
Therefore, in a host-BlueField hybrid setting, offloading only

ge rate and multiple bandwidth tests, run between 8 pairs of BF-t
to-BF communication outperforms host-to-host communication. (Da

Normalized OSU Mp| Multiple Bandwidth / Message Rate

BF—to-BF Bandwidth
Host=to-Host Bandwidth

= g =
EN o ©

Normalized Bandwidth
-
N

210
Data Size

215 220

(b) OSU MPI multiple bandwidth

0-BF or host-to-host processes: Like Fig. 3, a crossover
ta sizes are in bytes.)

the communication routines to BlueField would not result
In a significant overall performance gain. Additionally, since
MiniMD’s communication tasks depend on prior computation
steps, decoupling these routines from the rest of the application
and offloading them to a co-processor, while achieving full
computation-communication overlap, is not a trivial task.

So what could be done instead? Figure 7 indicates that
additional computation overlap may be possible. This finding

motivates our design approach in Section TV, which seeks to
offload work to BlueField.

121

SMARTER ALGORITHMS FOR SMARTER NETWORKS?

OSU benchmarks
imply off-path mode

(Blue line) For message sizes under 16 KiB,
BF2-to-BF2 communication is slower than
host-to-host communication using
conventional Infiniband NICs.

(Orange line) For messages under 64 KiB, it
is even slower to exchange messages
between the host and the BF2 on the same
node!

Similar findings hold for multi-pair
communication and all-gather operations.

Thus, our best bet for getting any
performance improvement will be via off-
path execution.

PART 3: MINIMD CASE STUDY

Normalized OSU MPI Bandwidth

BF -to-BF Bandwidth
Host-to-Host Bandwidth
1.8 1 Host -to—-BF Bandwidth
Host-to-Host Bandwidth
LB eeeeeeredennsni s s ssssssssssssssssasssssasssssabens e s s s e
T A —feeiroredinnascranisnnannisnnsaninnssnssnsasnonnssnsunsnisnssansonsenssnnaneasansnnonsasnssns fensornsneantssassnnaressnssnsannesessaesns fhussanssasonsentannssensnssnnssassnssnsannsdassassonnssssanasasansnsas
T D Feoceerredeesnsnnni s s s G e

20 25 2I10 215 220
Data Size

SMARTER ALGORITHMS FOR SMARTER NETWORKS?

OSU benchmarks |
imply off-path mode Y PE— Norma"zedOSUMP'Late”CV _______________________________ —

BF-to-BF Latency.
Host-to-Host Latency
Host-to-BF Latency : : :
, , , 4. Host—to—Host Lat S SR A b)

(Blue line) For message sizes under 128 KiB, 1.6 _ PotT IO ratEneY 5 5 5
the latency of BF2-to-BF2 communication is
higher than host-to-host communication N —_— i [\ o
using conventional Infiniband NICs. ? ? ? ?
(Orange |ine) For messages under 256 KiB, it 1.2 _\

is even slower to exchange messages
between the host and the BF2 on the same

node!

Similar findings hold for mut-pai N s o
communication and all-gather operations. |
Thus, our best bet for getting any 0.6 ...
performance improvement will be via off- _ _ _ _
path execution. 2'0 2'5 2'10 2'15 2'20

Data Size

122 PART 3: MINIMD CASE STUDY

SMARTER ALGORITHMS FOR SMARTER NETWORKS?

OSU benchmarks
imply off-path mode

Normalized OSU MPI_Get latency

22 e BF —to-BF Latency
: ' Host-to-Host Latency

Host-to-BF Latency
Host-to—-Host Latency

Even BF2 one-sided communication is 20 -
slower than conventional Infiniband.

1.8 N S T
164 —— N S T

17— e\ S F—

12 F—— I N S N — —

1.0 Jom o T

20 25 2I10 215 220
Data Size

123 PART 3: MINIMD CASE STUDY

SMARTER ALGORITHMS FOR SMARTER NETWORKS?

OSU benchmarks
o N lized OSU MPI Allgather Lat
|mp|y off-path mode R — °rma'ze gather Latency _

BF—-to-BF Avg Latency
Host-to-Host Avg Latency

The time to complete a BlueField-to- 3.0 4
BlueField all-gather is always worse—up to : : : ' '
3x—than via conventional NICs.

254 e\ — -
20\ S -

- [1 W - -

20 25 2I10 215 220
Data Size

124 PART 3: MINIMD CASE STUDY

125

SMARTER ALGORITHMS FOR SMARTER NETWORKS?

OSU benchmarks
imply off-path mode

The time to complete a BlueField-to-
BlueField all-reduce is always worse—up to
more than 4x—than via conventional NICs.

PART 3: MINIMD CASE STUDY

Normalized OSU MPI Allreduce Latency

BF-to-BF Avg Latency

was o N et Rt Lo
oo d S e\ R -
3.75 -
3.50 +
3.25 -
3.00 -
2.75 -
oo
5 . nr ny m

Data Size

126

SMARTER ALGORITHMS FOR SMARTER NETWORKS?

OSU benchmarks
imply off-path mode

For message sizes at 16 KiB or smaller, BF-to-

BF communication is slower than
conventional Infiniband.

PART 3: MINIMD CASE STUDY

1.8 1~

1.6 -

1.4 -

1.2 -

Normalized OSU MPI Multiple Bandwidth / Message Rate

...
..

BF-to-BF Bandwidth

Host-to-Host Bandwidth

2I10 215 220

Data Size

127

SMARTER ALGORITHMS FOR SMARTER NETWORKS?

MiniMD “as-is” does
not benefit from BF2

Each BF2 is a “mini-host.” Therefore,
consider an experiment in which we run
MiniMD using only the BF2 cards (i.e., no
node-host processing).

Because of its slower cores and worse
communication properties, MiniMD is
always slower than running it without
BF2, at all problem sizes (x-axis), any re-
neighboring interval (lines), and any node
configuration (subplot).

This type of result is characteristic of the
PENNANT study of Williams et al. mentioned
previously: without any algorithmic or code
restructuring, we should not expect any
benefits.

PART 3: MINIMD CASE STUDY

I INJ N
o N SN
1 1 1

Slowdown

-
o
|

Nodes = 2 # Nodes = 4

INJ N N
o N SN
! 1 1

Slowdown

-
o
|

-
o
|

Nodes = 8 # Nodes = 16

200 400 600 800 0 200 400 600
atoms (x10°3) # atoms (x103)

Re-neighboring Interval
1 2 —0— 5 10

800

Restructured method is a

viable simulation heuristic le-5
. 1.5~
Temperature divergence rate (TDR): a proxy
metric to assess the accuracy of our algorithm
1.0-
ODC Algorithm
— ® Baseline
0.5 - Off-path
0.0-

0 50 100
Re-neighboring Interval

128

129

Restructured method is a
viable simulation heuristic

Temperature divergence rate (TDR): a proxy
metric to assess the accuracy of our algorithm

We also veritied that the computed results of
the restructured method are still within an
acceptable level of accuracy.

TDR

le—5
1.5- o
1.0-
0.5-
®
0.0 q wex
0 50 100

Re-neighboring Interval

Algorithm
® Baseline
Off-path

