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communities; however, no research 
community has yet adopted the com-
bination suggested by collective com-
puting. The window of opportunity is 
open now.

A HISTORICAL PERSPECTIVE
One motivation for de!ning a fourth 
generation of computing is the time 
that has passed since Weiser de!ned 
the third generation of ubiquitous 
computing. Inspired by his frame-
work, Table 1 summarizes the evolu-
tion of computing generations since 
the 1930s, associated changes in the 
human–computer relationship, canon-
ical devices representing each gener-
ation, and, !nally, the driving appli-
cations that encouraged and then 
leveraged wide-scale adoption of those 
technologies.2 In progressing from one 
generation to the next, the previous 
generations’ devices and applications 
do not disappear but, rather, are aug-
mented by those of the next generation.

Generation 1: The mainframe
Automated computing’s origins can be 
traced back many centuries. The !rst 
vision leading to practical implementa-
tion was Alan Turing’s 1936 formulation 
of a computational engine, the so-called 
Turing machine, which has since in(u-
enced the architecture of computa-
tional devices.3 Turing’s ideas and work 
inspired the creation of automated com-
puting machines during World War II.

The assumption of the human–
computer relationship was that a 

single “mainframe” device would sup-
port many individuals, initially one 
at a time but eventually in seemingly 
simultaneous fashion. Ironically, the 
initial “killer app” for this !rst gener-
ation of mainframe computing was to 
help military powers decrypt enemy 
messages and calculate ballistics to 
more accurately target their forces. 
Once the war ended, large corpora-
tions realized that mainframes could 
automate much of their data process-
ing needs. They acquired their own 
mainframes to support business activ-
ities involving important but tedious 
calculations, such as accounting.

Generation 2: The PC
By the late 1960s, visionaries like 
J.C.R. Licklider recognized opportuni-
ties for boosting human performance 
through enhanced connection to com-
putation. Douglas Engelbart’s NLS/
Augment project, famously demon-
strated in 1968, showed for the !rst 
time how computing could augment 
human cognitive and communicative 
capabilities. Alan Kay and his Xerox 
PARC colleagues—inspired by the 
Ethernet, raster displays, and laser 
printing—created the !rst examples 
of a “personal” computer. This device 
transformed the human–computer 
relationship into one where each indi-
vidual had his or her own computa-
tional device. 

While these visions and prototypes 
explored applications for every indi-
vidual, the PC industry did not take o* 

until the adoption of the spreadsheet for 
use in businesses. Using the metaphor 
of the accountant’s ledger, electronic 
spreadsheets became an essential tool 
for accounting and forecasting func-
tions. Once businesses had invested 
in PCs for many of their employees, 
follow-on applications such as database 
management and document processing 
programs leveraged this investment 
and encouraged further purchases, with 
PCs eventually moving into homes.

Generation 3: 
Ubiquitous computing
By the late 1980s, personal computing 
had taken hold and new visionaries 
were dreaming of what was to come 
next. Weiser !rst articulated a com-
puting revolution by claiming that the 
human–computer relationship would 
lure individuals to own and interact 
with multiple devices. Weiser, as well 
as Ken Sakamura (University of Tok-
yo), Andy Hopper (Olivetti Research 
Laboratory), and William Newman 
and Michael Lamming (RankXerox 
EuroPARC), also envisioned compu-
tational devices of di*erent sizes and 
capabilities. Weiser used the analogy 
of inch-, foot-, and yard-scale devices 
that di*ered not only in size but also 
in mobility and ownership. 

Two applications spurred ownership 
of inch-scale devices in the mid-1990s. 
First, simpli!ed synchronization of PC–
based calendar and contact information 
to pocket-sized PDAs pushed the sale 
of those devices to busy, highly mobile 

TABLE 1. A framework for comparing computing generations, inspired by Mark Weiser.

Generation Time frame
Human–computer 
ratio Canonical device

Application

Initial Follow-on

1 Mid-1930s Many–1 Mainframe Scientific calculation Data processing

2 Late 1960s 1–1 PC Spreadsheet Database management, 
document processing

3 Late 1980s 1–many Inch/foot/yard Calendar and contact 
management, human–
human communication

Location-based services, 
social media, app ecosystem, 
education

4 Mid-2000s Many–many Cloud/crowd/shroud Personal navigation and 
entertainment

Health advisors, educational 
assistants, supply chain logistics

___________________

H P C  I S  D E A D ,  L O N G  L I V E  H P C !

Four “generations” of 
computing

Gregory Abowd (2016). “Beyond Weiser: From ubiquitous 
computing to collective computing.” DOI: 10.1109/MC.2016.22

https://dx.doi.org/10.1109/MC.2016.22


18 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

OUTLOOK

communities; however, no research 
community has yet adopted the com-
bination suggested by collective com-
puting. The window of opportunity is 
open now.

A HISTORICAL PERSPECTIVE
One motivation for de!ning a fourth 
generation of computing is the time 
that has passed since Weiser de!ned 
the third generation of ubiquitous 
computing. Inspired by his frame-
work, Table 1 summarizes the evolu-
tion of computing generations since 
the 1930s, associated changes in the 
human–computer relationship, canon-
ical devices representing each gener-
ation, and, !nally, the driving appli-
cations that encouraged and then 
leveraged wide-scale adoption of those 
technologies.2 In progressing from one 
generation to the next, the previous 
generations’ devices and applications 
do not disappear but, rather, are aug-
mented by those of the next generation.

Generation 1: The mainframe
Automated computing’s origins can be 
traced back many centuries. The !rst 
vision leading to practical implementa-
tion was Alan Turing’s 1936 formulation 
of a computational engine, the so-called 
Turing machine, which has since in(u-
enced the architecture of computa-
tional devices.3 Turing’s ideas and work 
inspired the creation of automated com-
puting machines during World War II.

The assumption of the human–
computer relationship was that a 

single “mainframe” device would sup-
port many individuals, initially one 
at a time but eventually in seemingly 
simultaneous fashion. Ironically, the 
initial “killer app” for this !rst gener-
ation of mainframe computing was to 
help military powers decrypt enemy 
messages and calculate ballistics to 
more accurately target their forces. 
Once the war ended, large corpora-
tions realized that mainframes could 
automate much of their data process-
ing needs. They acquired their own 
mainframes to support business activ-
ities involving important but tedious 
calculations, such as accounting.

Generation 2: The PC
By the late 1960s, visionaries like 
J.C.R. Licklider recognized opportuni-
ties for boosting human performance 
through enhanced connection to com-
putation. Douglas Engelbart’s NLS/
Augment project, famously demon-
strated in 1968, showed for the !rst 
time how computing could augment 
human cognitive and communicative 
capabilities. Alan Kay and his Xerox 
PARC colleagues—inspired by the 
Ethernet, raster displays, and laser 
printing—created the !rst examples 
of a “personal” computer. This device 
transformed the human–computer 
relationship into one where each indi-
vidual had his or her own computa-
tional device. 

While these visions and prototypes 
explored applications for every indi-
vidual, the PC industry did not take o* 

until the adoption of the spreadsheet for 
use in businesses. Using the metaphor 
of the accountant’s ledger, electronic 
spreadsheets became an essential tool 
for accounting and forecasting func-
tions. Once businesses had invested 
in PCs for many of their employees, 
follow-on applications such as database 
management and document processing 
programs leveraged this investment 
and encouraged further purchases, with 
PCs eventually moving into homes.

Generation 3: 
Ubiquitous computing
By the late 1980s, personal computing 
had taken hold and new visionaries 
were dreaming of what was to come 
next. Weiser !rst articulated a com-
puting revolution by claiming that the 
human–computer relationship would 
lure individuals to own and interact 
with multiple devices. Weiser, as well 
as Ken Sakamura (University of Tok-
yo), Andy Hopper (Olivetti Research 
Laboratory), and William Newman 
and Michael Lamming (RankXerox 
EuroPARC), also envisioned compu-
tational devices of di*erent sizes and 
capabilities. Weiser used the analogy 
of inch-, foot-, and yard-scale devices 
that di*ered not only in size but also 
in mobility and ownership. 

Two applications spurred ownership 
of inch-scale devices in the mid-1990s. 
First, simpli!ed synchronization of PC–
based calendar and contact information 
to pocket-sized PDAs pushed the sale 
of those devices to busy, highly mobile 

TABLE 1. A framework for comparing computing generations, inspired by Mark Weiser.

Generation Time frame
Human–computer 
ratio Canonical device

Application

Initial Follow-on

1 Mid-1930s Many–1 Mainframe Scientific calculation Data processing

2 Late 1960s 1–1 PC Spreadsheet Database management, 
document processing

3 Late 1980s 1–many Inch/foot/yard Calendar and contact 
management, human–
human communication

Location-based services, 
social media, app ecosystem, 
education

4 Mid-2000s Many–many Cloud/crowd/shroud Personal navigation and 
entertainment

Health advisors, educational 
assistants, supply chain logistics

___________________

H P C  I S  D E A D ,  L O N G  L I V E  H P C !

Four “generations” of 
computing

Gregory Abowd (2016). “Beyond Weiser: From ubiquitous 
computing to collective computing.” DOI: 10.1109/MC.2016.22

https://dx.doi.org/10.1109/MC.2016.22


18 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

OUTLOOK

communities; however, no research 
community has yet adopted the com-
bination suggested by collective com-
puting. The window of opportunity is 
open now.

A HISTORICAL PERSPECTIVE
One motivation for de!ning a fourth 
generation of computing is the time 
that has passed since Weiser de!ned 
the third generation of ubiquitous 
computing. Inspired by his frame-
work, Table 1 summarizes the evolu-
tion of computing generations since 
the 1930s, associated changes in the 
human–computer relationship, canon-
ical devices representing each gener-
ation, and, !nally, the driving appli-
cations that encouraged and then 
leveraged wide-scale adoption of those 
technologies.2 In progressing from one 
generation to the next, the previous 
generations’ devices and applications 
do not disappear but, rather, are aug-
mented by those of the next generation.

Generation 1: The mainframe
Automated computing’s origins can be 
traced back many centuries. The !rst 
vision leading to practical implementa-
tion was Alan Turing’s 1936 formulation 
of a computational engine, the so-called 
Turing machine, which has since in(u-
enced the architecture of computa-
tional devices.3 Turing’s ideas and work 
inspired the creation of automated com-
puting machines during World War II.

The assumption of the human–
computer relationship was that a 

single “mainframe” device would sup-
port many individuals, initially one 
at a time but eventually in seemingly 
simultaneous fashion. Ironically, the 
initial “killer app” for this !rst gener-
ation of mainframe computing was to 
help military powers decrypt enemy 
messages and calculate ballistics to 
more accurately target their forces. 
Once the war ended, large corpora-
tions realized that mainframes could 
automate much of their data process-
ing needs. They acquired their own 
mainframes to support business activ-
ities involving important but tedious 
calculations, such as accounting.

Generation 2: The PC
By the late 1960s, visionaries like 
J.C.R. Licklider recognized opportuni-
ties for boosting human performance 
through enhanced connection to com-
putation. Douglas Engelbart’s NLS/
Augment project, famously demon-
strated in 1968, showed for the !rst 
time how computing could augment 
human cognitive and communicative 
capabilities. Alan Kay and his Xerox 
PARC colleagues—inspired by the 
Ethernet, raster displays, and laser 
printing—created the !rst examples 
of a “personal” computer. This device 
transformed the human–computer 
relationship into one where each indi-
vidual had his or her own computa-
tional device. 

While these visions and prototypes 
explored applications for every indi-
vidual, the PC industry did not take o* 

until the adoption of the spreadsheet for 
use in businesses. Using the metaphor 
of the accountant’s ledger, electronic 
spreadsheets became an essential tool 
for accounting and forecasting func-
tions. Once businesses had invested 
in PCs for many of their employees, 
follow-on applications such as database 
management and document processing 
programs leveraged this investment 
and encouraged further purchases, with 
PCs eventually moving into homes.

Generation 3: 
Ubiquitous computing
By the late 1980s, personal computing 
had taken hold and new visionaries 
were dreaming of what was to come 
next. Weiser !rst articulated a com-
puting revolution by claiming that the 
human–computer relationship would 
lure individuals to own and interact 
with multiple devices. Weiser, as well 
as Ken Sakamura (University of Tok-
yo), Andy Hopper (Olivetti Research 
Laboratory), and William Newman 
and Michael Lamming (RankXerox 
EuroPARC), also envisioned compu-
tational devices of di*erent sizes and 
capabilities. Weiser used the analogy 
of inch-, foot-, and yard-scale devices 
that di*ered not only in size but also 
in mobility and ownership. 

Two applications spurred ownership 
of inch-scale devices in the mid-1990s. 
First, simpli!ed synchronization of PC–
based calendar and contact information 
to pocket-sized PDAs pushed the sale 
of those devices to busy, highly mobile 

TABLE 1. A framework for comparing computing generations, inspired by Mark Weiser.

Generation Time frame
Human–computer 
ratio Canonical device

Application

Initial Follow-on

1 Mid-1930s Many–1 Mainframe Scientific calculation Data processing

2 Late 1960s 1–1 PC Spreadsheet Database management, 
document processing

3 Late 1980s 1–many Inch/foot/yard Calendar and contact 
management, human–
human communication

Location-based services, 
social media, app ecosystem, 
education

4 Mid-2000s Many–many Cloud/crowd/shroud Personal navigation and 
entertainment

Health advisors, educational 
assistants, supply chain logistics

___________________

H P C  I S  D E A D ,  L O N G  L I V E  H P C !

Four “generations” of 
computing

Gregory Abowd (2016). “Beyond Weiser: From ubiquitous 
computing to collective computing.” DOI: 10.1109/MC.2016.22

https://dx.doi.org/10.1109/MC.2016.22


Q: Is the cloud for everyone, e.g., HPC people?

Session title:



Q: Is the cloud for everyone, e.g., HPC people?

A: Sure, why not?

Matsuoka, Domke, Wahib, Drozd, Hoefler 9

but may reduce accuracy of the results and, in the worst case,
break the application (e.g., convergence). But there is more
to this trade-off: what if a more clever implementation could
maintain convergence properties of high precision numerics,
while enjoying computational efficiency of low precision?
One common trick is using mixed precision on the algorithmic
level, for example, using low precision for individual particles
and only using high precision for aggregated values (Kutzner
et al. 2019). Some processors offer mixed precision tricks
at the hardware level in the form of instructions with low
precision inputs but higher precision accumulations.

There is however more to reduced precision than using
fewer bits—the question is how to optimally distribute bits
between mantissa and exponent (Tesla, Inc. 2021), or even if
to use an entirely different (not IEEE-754) way to represent
numbers (Gustafson and Yonemoto 2017). The story of
reduced precision in AI hardware is quite telling: In early
days of the field, predominantly the IEEE fp32 format was
used, but knowing that in deep neural nets the weights and
activations are typically distributed on a small range of values,
researchers began to explore the fp16 format. Soon the Pascal
generation of GPUs with fp16 performance—at a factor of
two compared to fp32 was released—and the magic did not
happen by itself. Exploding and vanishing gradients, outlier
weights, etc., made training large deep neural nets require
extra effort to stabilize (incurring corresponding overhead) or
just did not converge at all. The next generation of devices
came with bfloat16 format—same 16 bits, but more bits
allocated to range, less for precision. It worked better, but
still once in a while a model would collapse. Finally, the
recent generation of GPUs came with a 19-bit numeric format,
misleadingly called TensorFloat-32. So far it seems to be at
the sweet spot for artificial intelligence workloads—allowing
for noticeably faster arithmetics than fp32, while maintaining
enough numeric stability for the models to reliably converge
without extra programming effort.

Now that mixed precision is a de-facto standard in the AI
domain, more hardware support is being implemented. So
far there is no general clarity on the limits—how few bits
can we get away with in different HPC areas. The following
factors in particular are important to consider as we move
forward. A fully transparent solution for the problem is to
simulate higher precision using low precision operations,
e.g., as shown by Ootomo and Yokota (2022). Our Myth 4’s
memory-bound problems in particular are good candidates
for exploiting “simulated” high precision, since the overhead
can be masked by data transfers. It is not clear however
if this incurred overhead is an acceptable price that HPC
agrees to pay for remaining in higher precision. A less
transparent method is to approach the problem as precision
auto-tuning task by adapting the precision to a minimum
while bounding the error, e.g., as demonstrated by Menon et al.
(2018). One main limitation of that method is the reliance
on automatic differentiation (AD) to track error propagation,
which is not practical for large codebases. Finally, the least
transparent approach requires domain experts in HPC to study
the numerical stability of solvers to identify, on a case-by-case
basis, the susceptibility of solvers to lower/mixed precision.
While this approach is viable for solvers that are wrapped in
libraries to be consumed by HPC domain experts, it is unclear

whether domain experts writing their own solvers (common
in HPC) would be willing to take on this burden.

We close with these questions. . .

¨ Is the HPC community ready (or already late?) to react
to the new low precision formats driven by deep learning?
≠ Will HPC navigate itself into a high-precision niche?
Æ When, if ever, will the industry drop fp64 support?

Myth 12: All HPC Will Be Subsumed by the
Clouds!
The rapidly advancing AI and new precision options has
reignited the cloud discussion. The question whether clouds
will subsume supercomputing has been ongoing for more
than a decade, since the late 2000s Deelman et al. (2008), but
remains inconclusive. Today’s cloud offerings offer a wide
spectrum for HPC customers, ranging from low-cost standard
virtual machines to specialized top-gear HPC equipment in
the cloud. It is not surprising that cloud providers offer exactly
the same performance as on-prem supercomputing centers
in practice De Sensi et al. (2022). After all, they simply buy
the same hardware! Thus, this discussion is more of a fiscal
argument with an interesting economy-of-scale twist.

There are actually bi-directional aspects to the cloud-vs-
supercomputer argument. One is the so-called “cloudification
of supercomputers”, and the latter being “supercomputifica-
tion of clouds”, but they often get mixed-up leading to the
confusions in the discussions. We must look at both aspects,
and it is in fact the latter where such subsumption may happen
or not.

The former, “cloudification of supercomputers”, is an
unmistakable trend, in that various software stack features
and APIs are added so that supercomputers effectively
become high end compute resources in the same manner as
commercial clouds. Indeed, many major supercomputers are
already facilitating cloud features, so that they are effectively
clouds themselves, and interoperable with commercial clouds.
However, this assumes that there is already a supercomputing
resource facilitated for themselves, and does not directly affect
the subsumption argument.

The latter, or “supercomputification of clouds”, is where
subsumption may happen, in that clouds nowadays can
support features as well as performances of dedicated
supercomputers directly, such that they are directly amenable
as their replacement. Certainly, there are now multiple
cloud services that facilitate virtual compute clusters in
the cloud. However, although Intersect 360 reports that
HPC-in-the-cloud CAGR has been dramatic, over 80% in
2021 Intersect360 Research (2022), it also reports the overall
high growth in the HPC market, especially in the high end,
and also projects that, the growth in the cloud HPC market
will flatten over time to be consistent with the overall HPC
industry growth. Continued investments by all major global
regions in exascale machines and beyond, coupled with
companies facilitating their own top-ranked machines, will
likely continue to fuel the on-prem infrastructure growth.

In fact, for enterprise IT infrastructures, there has always
been a swing between on-prem and public clouds, largely
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Serverless seismic inversion (2018-2019)

— Philipp Witte (GT Ph.D., now @ MSR), Felix Herrmann (advisor)

Figure 4.1: A two-dimensional depiction of marine seismic data acquisition. A vessel fires
a seismic source and excites acoustic waves that travel through the subsurface. Waves
are reflected and refracted at geological interfaces and travel back to the surface, where
they are recorded by an array of seismic receivers that are towed behind the vessel. The
receivers measure pressure changes in the water as a function of time and receiver number
for approximately 10 seconds, after which the process is repeated. A typical seismic survey
consists of several thousand of these individual source experiments, during which the vessel
moves across the survey area.

and are embarrassingly parallel to compute. Evaluating the objective function and comput-

ing the gradient are therefore instances of a MapReduce program [30], as they involve the

parallel computation and subsequent summation of elements of the sum. However, com-

puting the gradient for a single index i involves solving two PDEs, namely a forward wave

equation and an adjoint (linearized) wave equation (denoted as a multiplication with J
>).

For realistically sized 3D problems, the discretized model in which wave propagation is

modeled has up to 109 variables and modeling has to be performed for several thousand

time steps. The number of time steps is determined by the time stepping interval and de-

pends on the wave speed and the temporal frequency of the data and increases significantly

as these properties change [40]. The observed seismic data di (i = 1, ..., ns) is typically

in the range of several terabytes and a single element of the data (a seismic shot record)

ranges from several mega- to gigabytes.

The problem structure of equation 4.1 is very similar to deep learning and the parallels

between convolutional neural networks and PDEs have lately attracted strong attention
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Serverless seismic inversion (2018-2019)

— Philipp Witte (GT Ph.D., now @ MSR), Felix Herrmann (advisor)

Mathematically, seismic imaging and parameter estimation are PDE-constrained opti-

mization problems, that are typically expressed in the following (unconstrained) form [36,

37]:

minimize
m

�(m) =
nsX

i=1

1

2
||F(m,qi)� di||

2
2, (4.1)

where F(m,qi) represents the solution of the acoustic wave equation for a given set of

model parameters m. The evaluation of this operator corresponds to modeling seismic data

for a given subsurface model (or image) m and a known source function qi by solving a

wave equation using time-domain finite-difference modeling. The vector di denotes the

observed seismic measurements at the ith location of the seismic source, which is moved

along the surface within the survey area (Figure 4.1). In essence, the goal of seismic in-

version is to find a set of model parameters m, such that the numerically modeled data

matches the observed data from the seismic survey. The total number of individual source

experiments ns for realistic surveys, i.e. the number of PDEs that have to solved for each

evaluation of �(m), is quite large and lies in the range of 103 for 2D surveys and 105 for

3D surveys.

Seismic inverse problems of this form are typically solved with gradient-based op-

timization algorithms such as (stochastic) gradient descent, (Gauss-) Newton methods,

sparsity-promoting minimization or constrained optimization [e.g. 38, 39] and therefore

involve computing the gradient of equation 4.1 for all or a subset of indices i. The gradient

of the objective function is given by:

g =
nsX

i=1

J
>
⇣
F(m,qi)� di

⌘
, (4.2)

where the linear operator J = @F(m,qi)
@m is the partial derivative of the forward modeling

operator with respect to the model parameters m and > denotes the matrix transpose. Both

the objective function, as well as the gradient exhibit a sum structure over the source indices
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Figure 4.3: The gradients of the LS-RTM objective function are computed as an embar-
rassingly parallel workload using AWS Batch. This process is automatically invoked by
the AWS Step Functions (Figure 4.2) during each iteration of the workflow. The gradients
of individual source locations are computed as separate jobs on either a single or multiple
EC2 instances. Communication is only possible between instances of a single job, but not
between separate jobs. The resulting gradients are saved in S3 and the respective object
names are sent to an SQS queue to invoke the gradient summation.

for implementing forward and adjoint wave equations as high-level symbolic expressions

based on the SymPy package [66]. During runtime, the Devito compiler applies a series of

performance optimizations to the symbolic operators, such as reductions of the operation

count, loop transformations, and introduction of parallelism [65]. Devito then generates

optimized finite-difference stencil code in C from the symbolic Python expressions and

dynamically compiles and runs it. Devito supports both multi-threading using OpenMP, as

well as generating code for MPI-based domain decomposition. Its high-level API allows

expressing wave equations of arbitrary stencil orders or various physical representations
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(a) (b)

Figure 4.13: (a) Historical spot prices for a variety of 4xlarge instances over a 10 day
period in April 2019. All shown instances have 128 GB of memory, but vary in their
number of CPU cores and architectures. Figure (b) shows the relative cost of running an
iterative seismic imaging application over this time period in the respective zone and for the
case, in which the cheapest available instance is chosen at the beginning of each iteration.

the historical spot price of the xlarge instance for various instance types (m5, c5, c5n

and r5). All instances have 4 virtual CPUs, but vary in the amount of memory and their

respective CPU architecture. Spot instances are not priced proportionally to their hardware

(memory, cores, architecture), but based on the current demand. Therefore, it is oftentimes

beneficial to compare different instance types and choose the currently cheapest type from

a pool of possible instances. As before, we compare the relative cost for running the 10

day example on a cluster of EC2 instances, in which case the instance type is fixed for

the duration of the program, against the dynamic approach with AWS Batch. Again, the

event-driven approach allows to minimize exposure to price changes over the duration of

the example, by choosing the cheapest available instance type at the beginning of each

iteration.
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3.4 Tra�ic Burstiness
We now investigate the impact of tra�c burstiness on network performance. To assess this, we
execute a 1MiB ping-pong between two nodes, varying the inter-message interval, i.e., the time
between two subsequent message transmissions between 0 and 1 second. To exclude any pipelining
e�ect, the benchmark waits for a message to be completely received before sending the next one.
We repeat each experiment for 20 iterations, with 10 warm-up iterations. We did not observe any
impact of burstiness on the performance, except for GCP, for which we report the results in Figure 4.
We show on the X axis the interval between two subsequent messages, and on the Y axis the RTT/2
(milliseconds).

Fig. 4. Distribution of RTT/2 (ms) of 1MiB transfers on GCP HPC instances, for di�erent inter-message
intervals.

We observe how, when the time interval between subsequent messages is one second, a 1MiB
message requires around 1.5 milliseconds to be transferred from the source to the destination.
On the other hand, when we decrease the inter-message interval, the RTT starts decreasing, and,
eventually, the RTT/2 becomes lower than 0.5 milliseconds. We observed this behavior consistently
in multiple runs, in di�erent days, and at di�erent times of the day.
Our initial assumption was that this could be related to the Andromeda network virtualization

stack, used by GCP for forwarding packets over the network [23]. To scale on very large networks,
and avoid storing thousands of VM-to-VM forwarding rules on each VM, the Andromeda VM
host stack sends all the packets for which it does not have a route to Hoverboard gateways. If
the Andromeda control plane detects that a �ow exceeded some bandwidth usage threshold, it
installs direct VM-to-VM forwarding rules in the VM host stack, so that high-bandwidth �ows are
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Fig. 9. Latency noise for di�erent node distances for 100 Gb/s HPC instances. Base latency is reported in
Table 2.

When the two nodes are on di�erent racks, the noise signi�cantly increases on Daint. One of the
reasons is adaptive routing, that can sometimes unnecessarily select longer paths [24].
On-premise HPC systems are characterized by latency noise with higher intensity, due to the

generally lower latency (cf. Sec. 3). As a consequence, �uctuations in the latency have a larger
relative impact (but a smaller absolute impact). It is worth remarking that, regardless of the absolute
impact of noise on the latency, as we will show in Sec. 5, noise at scale can negatively impact the
performance, even on systems characterized by a lower base latency.

Table 2. Minimum and average latency and bandwidth for the di�erent providers, instance types, and node
distances.

AWS Azure GCP Oracle Alps Daint DEEP-EST

Normal HPC
(Metal) Normal HPC HPC

(200 Gb/s) Normal HPC Normal HPC
(Metal)

HPC
(Metal)

HPC
(Metal)

HPC
(Metal)

S�
�
�

R�
��

Min. Lat. (us) 19.28 16.79 26.11 1.50 1.70 9.42 8.46 24.68 1.66 2.13 1.19 1.19
Mean Lat. (us) 23.11 18.97 29.59 1.65 1.84 10.64 9.98 26.43 1.72 3.01 2.39 1.70
Max. Band. (Gb/s) 27.32 78.74 7.42 93.92 194.48 45.45 75.75 11.20 97.53 97.14 74.37 90.46
Mean Band. (Gb/s) 27.02 70.84 7.28 93.51 194.25 38.82 68.45 8.39 97.50 96.32 73.93 90.27

D
��
��
��
��

R�
��

�

Min. Lat. (us) 22.46 17.20 N.A. N.A. N.A. 12.39 14.90 N.A. N.A. 2.66 1.19 1.41
Mean Lat. (us) 27.57 19.26 N.A. N.A. N.A. 15.02 16.66 N.A. N.A. 2.90 3.33 1.93
Max. Band. (Gb/s) 30.52 77.72 N.A. N.A. N.A. 34.84 70.11 N.A. N.A. 96.15 75.24 90.49
Mean Band. (Gb/s) 30.14 67.02 N.A. N.A. N.A. 30.67 65.71 N.A. N.A. 96.00 74.59 90.26

Figure 10 shows the latency noise for di�erent instance types for the four cloud providers (with
instances running in the same rack). We observe that on GCP normal instances are characterized
by higher noise compared to HPC instances, whereas, on Azure, HPC instances experience a
few high-intensity noise events. We did not observe signi�cant di�erences between the di�erent
instance types on AWS, whereas on Oracle we observe a higher noise on HPC instances compared
to normal instances.

Observation 6: Latency noise a�ects both cloud and on-premise HPC systems, and can
increase the latency by more than 100x (in a single case up to 35000x). Except that for GCP,
HPC instances are not characterized by a lower latency noise than normal instances.
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Table 3: Characterization of n-body using perf run on a sin-
gle core. Page size = 4KB, problem size: 1M.
Platform Instruction (G) Page Fault (K) Cache Miss (M) Time (s)
Cori Haswell 414.7 367.2 11,347.8 461.7
Cori KNL 415.4 367.4 11,220.1 1,736.5
AWS r5dn.16xlarge - 367.2 - 486.9
AWS c5.18xlarge 427.2 367.2 21,457.4 480.6

Table 4: Characterization of FFT using perf run on a single
core. Page size = 4KB, problem size: 50K.
Platform Instruction (G) Page Fault (K) Cache Miss (M) Time (s)
Cori Haswell 782.1 9,766.8 871.5 312.4
Cori KNL 784.9 9,766.8 20,915.0 2,348.1
AWS r5dn.16xlarge - 9,767.5 - 303.3
AWS c5.18xlarge 1,097.9 9,766.6 2,953.6 335.8

better performance scaling as the number of nodes increases. AWS
R5 performs as we would expect given its performance in the previ-
ous microbenchmark, while AWS C5 is far from Cori Haswell. Its
advertised network bandwidth is about 3⇥ lower than Cori Haswell
and since it is a compute-optimized instance, we suspect it may
su�er from network contention.

Our results suggest that the place we would expect HPC to retain
an advantage is in applications with many small messages. Algorith-
mic techniques, however, typically try to avoid this situation. These
results have important implications for communication-intensive
applications that have not historically bene�ted from cloud com-
puting due to their bandwidth requirements.

3.3 A User-Application View
In this section, we �rst measure and compare the serial runtime of
the applications and analyze the single-core performance of the ap-
plications to better understand the runtime di�erences and similari-
ties between the machines. Then, we study the parallel performance
of the applications in a multinode environment.

3.3.1 Serial Performance. In Tables 3 and 4, we report the single
core performance for the N-Body simulation and the FFT, respec-
tively. In both applications, Cori KNL has a signi�cantly higher run-
time than the other machines. Its poor performance can be justi�ed
by the lower frequency of its processor and the poor performance of
its memory system. Cori KNL’s clock speed is about half that of the
other cores in the study, and it needs all 68 of them to compete with
the (theoretical) GFlop rate of the other 32-36 core nodes. Recall
that the L2 caches on Cori KNL are shared by two cores, while
they are private on the other machines. In fact, the performance
for FFT is relatively worse since it is a more memory intensive ap-
plication than N-Body. Cori Haswell and the two cloud instances
show similar runtime for both applications. Cloud instances have
lower cache performance than Cori Haswell, while they have higher
bandwidth when data can no longer �t in the cache. Since we study
single-core performance here, the lower half of Table 2 shows that
Cori Haswell and the AWS instances have comparable performance
in the single-core STREAM benchmark.

Overall, these results are consistent with the results of our mi-
crobenchmarks and con�rm that cloud virtualization overhead has
decreased to a point where application performance is not signi�-
cantly impacted. As a result, cloud instances have comparable run-
time to a HPC system for both applications.

Summit Breakdown H. sapiens

s

Figure 4: The N-Body strong scaling with 1M particles (left)
and the FFT strong scaling with 50K points (right) across the
machines. The number next to the name in the legend indi-
cates the number of processes per node.

3.3.2 Workload Characterization. Recall, when we measure the
runtime of an application, we measure both the processor and the
memory system. Runtime alone is not enough to get a reasonable
understanding of the variables that a�ect application performance.

Here, we extend our analysis by measuring the number of page
faults, instructions and cache misses for each application on each
platform and comparing the results. A high rate of page swapping-
in/out, cache misses, and a high number of instructions can signif-
icantly slow down applications [6, 28, 38]. On all systems, these
metrics are measured for a process on a single node using perf [41].
Cache misses and instructions are not available for AWS R5. In
particular, it is not easy to get access to accurate hardware counters.
On HPC systems they typically require administrative privileges,
while on cloud systems it can be di�cult to separate the e�ects of
virtualization and gain access to accurate metrics.

Tables 3�4 give the number of page faults on the machines for
the N-Body simulation and the FFT. The number of page faults is
mostly the same and con�rms the same behavior across the four
machines. Cori Haswell and Cori KNL automatically load a software
package to increase the page size from 4K to 2M. This setting was
unloaded and disabled to allow a fair comparison between the four
machines. Similarly, the page size could have been increased on
the AWS instances. For simplicity, we chose to reduce the page
size on Cori and do not expect this setting to change the overall
trend of our results. The only signi�cant di�erence in the number
of instructions is between the Cori systems and AWS C5 for the FFT.
This di�erence could explain the runtime di�erence between Cori
Haswell and AWS C5, although it is not large.

Cache misses show a more relevant impact on performance than
page faults and instructions. The Cori systems have similar cache
misses for N-Body simulation, while they show a signi�cant gap
for FFT. Cori KNL’s direct mapped cache signi�cantly penalizes
its performance for a memory-intensive application such as FFT.
AWS C5 has a larger number of cache misses than Cori Haswell
for both applications. This result, combined with AWS C5’s slower
L1 (Figure 1), suggests that cache misses are one of the variables
contributing to the runtime di�erence between these two machines.

Our workload characterization reveals that cache misses and
memory system performance have the largest impact on single-core
performance. Nevertheless, the resulting runtime di�erences are

5
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•  Time shifting 
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• All that can be is shifted 
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•  Environmental 

July 26, 2016 ZCCloud: Volatile Resources  

How are these Resources different? 

• Massive scale – 10-100MW data centers 
•  10,000’s of servers, 100,000’s of cores 

•  Intermittent [100’s of outages, 100H’s downtime]/year 
•  A single “9”  
•  1000x traditional rates 
•  But – “green”, low cost power, cheaper to construct 

July 26, 2016 ZCCloud: Volatile Resources  

Stranded Power 
(ONLY) 
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Q: Is the cloud for everyone, e.g., HPC people?

A: Sure, why not?

Q: What system will the cloud provide?



Figure 2: Computing power used in: (a) deep learning models of all types [4] (as compared with
the growth in hardware performance from improving processors[23], as analyzed by [39] and
[56])8, (b) image classification models tested on the ImageNet benchmark (normalized to the
2012 AlexNet model [52]).
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Satiating the beast… The demand for compute due to deep learning far outstrips the 
what Moore’s Law-like hardware performance can deliver. Source: 
Thompson et al. (2020): “The computational limits of deep 
learning.” arXiv:2007.05558v1
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(b) Training with Single vs. Multiple Nodes
Fig. 3. Parallel Architectures in Deep Learning

a �rst-class concern while multi-threaded programming allows the programmer to only reason
about the parallelism, leaving the data shu�ing to the hardware system (often through hardware
cache-coherence protocols).
General-purpose CPUs have been optimized for general workloads ranging from event-driven

desktop applications to datacenter server tasks (e.g., serving web-pages and executing complex
business work�ows). Machine learning tasks are often compute intensive, making them similar
to traditional high-performance computing (HPC) applications. Thus, large learning workloads
perform very well on accelerated systems such as general purpose graphics processing units (GPU)
or �eld-programmable gate arrays (FPGA) that have been used in the HPC �eld for more than
a decade now. Those devices focus on compute throughput by specializing their architecture to
utilize the high data parallelism in HPC workloads. As we will see later, most learning researchers
utilize accelerators such as GPUs or FPGAs for their computations. We emphasize that the main
technique for acceleration is to exploit the inherent parallelism in learning workloads.
Out of the 240 reviewed papers, 147 papers present empirical results and provide details about

their hardware setup. Fig. 3a shows a summary of the machine architectures used in research papers
over the years. We see a clear trend towards GPUs, which dominate the publications beginning from
2013. However, even accelerated nodes are not su�cient for the large computational workload. Fig.
3b illustrates the quickly growing multi-node parallelism in those works. This shows that, beginning
from 2015, distributed-memory architectures with accelerators such as GPUs have become the
default option for machine learning at all scales today.

2.3.2 Multi-machine Parallelism. Training large-scale models is a very compute-intensive task.
Thus, single machines are often not capable to �nish this task in a desired time-frame. To accelerate
the computation further, it can be distributed across multiple machines connected by a network. The
most importantmetrics for the interconnection network (short: interconnect) are latency, bandwidth,
and message-rate. Di�erent network technologies provide di�erent performance. For example, both
modern Ethernet and In�niBand provide high bandwidth but In�niBand has signi�cantly lower
latencies and higher message rates. Special-purpose HPC interconnection networks can achieve
higher performance in all three metrics. Yet, network communication remains generally slower
than intra-machine communication.

Fig. 4a shows a breakdown of the number of nodes used in deep learning research over the years.
It started very high with the large-scale DistBelief run, reduced slightly with the introduction of
powerful accelerators and is on a quick rise again since 2015 with the advent of large-scale deep
learning. Out of the 240 reviewed papers, 73 make use of distributed-memory systems and provide
details about their hardware setup. We observe that large-scale setups, similar to HPC machines,
are commonplace and essential in today’s training.

Ben-Nun & Hoefler (2019). “Demystifying parallel and distributed deep learning: an in-depth concurrency analysis.” 
doi:10.1145/3320060
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Q: What system will the cloud provide?

Q: What is an optimal GPU machine for DL?

Q: Is the cloud for everyone, e.g., HPC people?

A: Sure, why not?
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Figure 1: The transformer block structure of Megatron

Table 1: Optimizations related to LLM training grouped in families related to a system component or particular parallelism they
target. Families and optimizations within families are sorted by year. The presented relative signi�cance of each optimization’s
e�ect is subjective and based on experimental evaluation of the search space.

Optimization Year Related
system

Comp
time

Comp
util

Mem
time

Mem
cap

Mem
BW

Net
time

Net
BW range

Data parallelism (DP) [61] 1989 network – "" – """""" – "" "" 1 .. batch
DP overlap [25] 2017 network "" ## – – – ###### – true/false
Optimizer sharding [24] 2019 network ## – – #### – – – true/false
Recompute [5, 10] 2000 compute """" – – ###### – – – full/attn/none
Fused layers [28] 2018 compute – """" #### #### ## – – true/false
Microbatch training [13] 2019 compute – """" – """""" – – – 1 .. batch/DP
Pipeline parallelism (PP) [7, 13] 2012 network "" #### – #### – "" "" 1 .. blocks
PP 1F1B schedule [7, 32] 2012 network – – – #### – – – true/false
PP interleaving [33] 2021 network ## """" – "" – "" """" 1 .. blocks/PP
PP RS + AG [21] 2022 network – – – – – ## #### true/false
Tensor parallelism (TP) [7, 22, 49] 2012 network #### ## – #### #### """""" """""" 1 .. attn
TP RS + AG instead AR [33] 2021 network – – "" "" – ## ## true/false
Sequence parallelism (SP) [21] 2022 network ## – ## #### ## "" "" true/false
TP redo for SP [21] 2022 network – – – ## – "" "" true/false
TP overlap [58] 2022 network "" ## – – – #### – true/false
Weight o�oad [48] 2021 memory – – "" ###### "" – – true/false
Activation o�oad [48] 2021 memory – – "" ###### "" – – true/false
Optimizer o�oad [48] 2021 memory – – "" ## "" – – true/false

Each computational operation (e.g., GEMM) is fed to a processing
model that determines how long it will take. The model uses a
combination of the time spent in raw compute (i.e., FLOPs) and the
amount of time in raw memory accesses, which closely matches
the performance of real processors [39].

Each processor is able to connect to an arbitrary number of
networks. Each network is programmed with a size, bandwidth,
latency, and e�ciency. A network also has a speci�cation of how
it handles each speci�c operation, which is also the mechanism
that models the performance bene�ts of in-network collectives [38].
Each network also has a value of how much processing power is
taken from the processor while the network is operating at full band-
width. This value is explicitly used when modeling the performance
degradation of overlapping communication with computation.

2.3 Execution Con�guration
Many performance optimization techniques and implementation
strategies have been proposed for transformer-basedmodel training.
We surveyed these methods and present them in Table 1. 2

Calculon implements all the optimizations from the Table 1,
column “range” of which refers to the acceptable range of each
technique as an input parameter of Calculon. The full space of
techniques that Calculon describes grows combinatorially, and this
is the biggest challenge for the implementation. While individual
techniques can be described with formulae, they must be combined
carefully to ensure their interactions are captured and feasibility
constraints are accounted for.

We use the regular structure of transformer models and analyze
only a single transformer block, nevertheless distinguishing edge
blocks with point-to-point communication for PP. We separate the

2An extended appendix with full formulae was redacted due page limit and will be
available at �nal submission, however, all the formulae are publicly available in the
referenced papers.

Mike Isaev (GT Ph.D.), Nic McDonald (NVIDIA), L. Dennison (NVIDIA), R. Vuduc (unpublished 2023 manuscript)

Canonical structure of a large language model
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Fig. 14. Neural Network Parallelism Schemes

It could be argued that the use of minibatches in SGD for neural networks was initially driven by
data parallelism. Farber and Asanović [73] used multiple vector accelerator microprocessors (Spert-II)
to parallelize error backpropagation for neural network training. To support data parallelism, the
paper presents a version of delayed gradient updates called “bunch mode”, where the gradient is
updated several times prior to updating the weights, essentially equivalent to minibatch SGD.
One of the earliest occurrences of mapping DNN computations to data parallel architectures

(e.g., GPUs) were performed by Raina et al. [200]. The paper focuses on the problem of training Deep
Belief Networks[97], mapping the unsupervised training procedure to GPUs by running minibatch
SGD. The paper shows speedup of up to 72.6⇥ over CPU when training Restricted Boltzmann
Machines. Today, data parallelism is supported by the vast majority of deep learning frameworks,
using a single GPU, multiple GPUs, or a cluster of multi-GPU nodes.
The scaling of data parallelism is naturally de�ned by the minibatch size (Table 4). Apart from

Batch Normalization (BN)[117], all operators mentioned in Section 4 operate on a single sample at a
time, so forward evaluation and backpropagation are almost completely independent. In the weight
update phase, however, the results of the partitions have to be averaged to obtain the gradient
w.r.t. the whole minibatch, which potentially induces an allreduce operation. Furthermore, in this
partitioning method, all DNN parameters have to be accessible for all participating devices, which
means that they should be replicated.

6.1.1 Neural Architecture Support for Large Minibatches. By applying various modi�cations
to the training process, recent works have successfully managed to increase minibatch size to
8k samples[83], 32k samples[249], and even 64k[218] without losing considerable accuracy. While
the generalization issue still exists (Section 3), it is not as severe as claimed in prior works[211].
One bottleneck that hinders scaling of data parallelism, however, is the BN operator, which re-
quires a full synchronization point upon invocation. Since BN recurs multiple times in some DNN
architectures[93], this is too costly. Thus, popular implementations of BN follow the approach
driven by large-batch papers[83,105,249], in which small subsets (e.g., 32 samples) of the minibatch
are normalized independently. If at least 32 samples are scheduled to each processor, then this
synchronization point is local, which in turn increases scaling.
Another approach to the BN problem is to de�ne a di�erent operator altogether. Weight Nor-

malization (WN)[208] proposes to separate the parameter (w) norm from its directionality by way
of re-parameterization. In WN, the weights are de�ned as w =

⇣
�
k� k

⌘
· � , where � represents

weight magnitude and � a normalized direction (as changing the magnitude of � will not introduce
changes in r`). WN decreases the depth (D) of the operator from O(logN ) to O(1), removing
inter-dependencies within the minibatch. According to the authors, WN reduces the need for BN,
achieving comparable accuracy using a simpli�ed version of BN (without variance correction).

6.1.2 Coarse- and Fine-Grained Data Parallelism. Additional approaches for data parallelism
were proposed in literature. In ParallelSGD[266], SGD is run (possibly with minibatches) k times in

Ben-Nun & Hoefler (2019). “Demystifying parallel and distributed deep learning: an in-depth concurrency analysis.” 
doi:10.1145/3320060
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Table 1: Optimizations related to LLM training grouped in families related to a system component or particular parallelism they
target. Families and optimizations within families are sorted by year. The presented relative signi�cance of each optimization’s
e�ect is subjective and based on experimental evaluation of the search space.
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Each computational operation (e.g., GEMM) is fed to a processing
model that determines how long it will take. The model uses a
combination of the time spent in raw compute (i.e., FLOPs) and the
amount of time in raw memory accesses, which closely matches
the performance of real processors [39].

Each processor is able to connect to an arbitrary number of
networks. Each network is programmed with a size, bandwidth,
latency, and e�ciency. A network also has a speci�cation of how
it handles each speci�c operation, which is also the mechanism
that models the performance bene�ts of in-network collectives [38].
Each network also has a value of how much processing power is
taken from the processor while the network is operating at full band-
width. This value is explicitly used when modeling the performance
degradation of overlapping communication with computation.

2.3 Execution Con�guration
Many performance optimization techniques and implementation
strategies have been proposed for transformer-basedmodel training.
We surveyed these methods and present them in Table 1. 2

Calculon implements all the optimizations from the Table 1,
column “range” of which refers to the acceptable range of each
technique as an input parameter of Calculon. The full space of
techniques that Calculon describes grows combinatorially, and this
is the biggest challenge for the implementation. While individual
techniques can be described with formulae, they must be combined
carefully to ensure their interactions are captured and feasibility
constraints are accounted for.

We use the regular structure of transformer models and analyze
only a single transformer block, nevertheless distinguishing edge
blocks with point-to-point communication for PP. We separate the

2An extended appendix with full formulae was redacted due page limit and will be
available at �nal submission, however, all the formulae are publicly available in the
referenced papers.
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“slow” memory
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Q: What system will the cloud provide?

Q: What is an optimal GPU machine for DL?

A: Add slow memory, “modest” networks

Great! So what’s the problem?

Q: Is the cloud for everyone, e.g., HPC people?

A: Sure, why not?



Reduces energy: fewer flops, less storage

Recall:

<latexit sha1_base64="wlvbpO/iCFawUxEqvXghJqsRc90=">AAAGhnicdVTdbts2FFbb1cu8v7a73A07o0AKqLElx3aSq2zulgxrZ89t2gKWl9H0kSyEogSSiusSeoA9zW63R9nb7FC2MStxCUggeb7znV+eacZjpVutf+/cvffJ/dqne5/VP//iy6++fvDw0RuV5pLBBUt5Kt9NqQIeC7jQsebwLpNAkymHt9OrvpW/vQap4lS81ssMJgmNRBzGjGq8unzQCKZxNDC//u4XJOCpiGQczTWVMl2QtahAVOugVS5ye+OtNw1nvYaXD+//EsxSlicgNONUqbHXyvTEUKljxqGoB7mCjLIrGoGhiVLLZFqQJwnVc3VTZi93yca5Do8mJhZZrkEwhKAszDnRKbGBklksgWm+xA1lMkbLhM2ppExjOur1J+QlvQJyDvwaUEaJnqMOhDTnumJHMcphNjHzEom+SxCwYGmSUDELQprEfLnWM4EK19uCVEheexMTpqL01Nr+UVCsEJHAsQ7XQFT8IRZRJXaU4S2U8O9znWIGMIRYKJC2dCQNCbzXkhKFGlDN2/vyrlR9DiG2Bjkf9skZRh8BKZuGKDaHBMizZ2Q8xAC1BtIkAwZUkJ+sRycnpD94MbgY8dT2z2R/rnWmTprNxWJxYClyuZLgIWlmK4qmd9hrN0uWS8vytOpVaRkzOCt9Kk8GHTubYreJwozOfiiM1/LdXsftHO/C8RzWsG7b9TrHrtfr7cBJmG3Yjn338MjtHu5ApZKKaMPn+0jY6rhdfwdyCZyniw2y7bl+q+t22zuQkYTlxnS3iy4e2W8HcEbl1Rb4uIPWe67n23D+by8TzDMWlVq2Fcb+xJhgRdLwioZfBJtKV5QYl2Wqxth1FYatLKL+bS2buN1KZUpLHeypoYIc33c6A+xH0n8xetXGFtZLDpV6I6GyoDbceDUmiECrwgQcwtWsKWn7KMXGtk+d2JGQclX10M6jlX8gVC7BIk1g//hGzaAIHpeM+w0vKMfY04/kZwSUW/PbLDIhPwePR1sazwFnl4SXKB5kIKnGrAdCfCiM/dU/AhjKdFqYobSAbZvXVL7Kp2UJt+3anF6aVRAyMYGOxZJgYXFtPMHx690ctrc3b/wDr3vQ+e2wcfrHehDvOd863zn7juf0nFPn3Bk6Fw5z/nT+cv52/qnt1Q5qnVpvBb17Z63zjVNZtdP/AKYCPQM=</latexit>

O
�
N2

�
�! O(N)



% time communicating increases

Recall:

<latexit sha1_base64="wlvbpO/iCFawUxEqvXghJqsRc90="></latexit>

O
�
N2

�
�! O(N)





puted using the true 1000-dimensional parameter vector. The prediction MSE is averaged over

query vectors sampled from an isotropic Gaussian distribution.

Figure 1: The effects of model complexity and regularization on model performance (measured
as the negative log10 of normalized mean squared error of the prediction compared to the optimal
predictor) and on computational requirements, averaged over 1000 simulations per case. (a)
Average performance as sample sizes increase. (b) Average computation required to improve
performance.

As figure 1(a) shows, the neural-network analog (the flexible, regularized model) is much

more efficient with data than an unregularized flexible model, but considerably less so than the

oracle model or (initially) the expert model. Nevertheless, as the amount of data grows, the

regularized flexible model outperforms expert models that don’t capture all contributing factors.

This graph generalizes an insight attributed to Andrew Ng: that traditional machine learning

techniques do better when the amount of data is small, but that flexible deep learning models do

better with more data [53]5. We argue that this is a more-general phenomenon of flexible models

having greater potential, but also having vastly greater data and computational needs.6 In our

illustration in figure 1, for example, 1,500 observations are needed for the flexible model to reach
5In fact sufficiently large neural networks are universal function approximators [42], implying maximum

flexibility.
6Another demonstration of this comes from the fact that certain types of deep neural networks can provably be

replaced by Gaussian process models that are also flexible and have the advantage of being less black-box, but scale
their computational needs even more poorly that neural networks [66].
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Linear regression example: Thompson et al., “The computational limits of deep learning” (July 2020). arXiv:2007.05558v1

~ Accuracy ~ Ops (~ time)

# samples ~ accuracy
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regularized flexible model outperforms expert models that don’t capture all contributing factors.

This graph generalizes an insight attributed to Andrew Ng: that traditional machine learning

techniques do better when the amount of data is small, but that flexible deep learning models do

better with more data [53]5. We argue that this is a more-general phenomenon of flexible models

having greater potential, but also having vastly greater data and computational needs.6 In our

illustration in figure 1, for example, 1,500 observations are needed for the flexible model to reach
5In fact sufficiently large neural networks are universal function approximators [42], implying maximum
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6Another demonstration of this comes from the fact that certain types of deep neural networks can provably be
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6

S A L I S H A N  2 0 2 329

Linear regression example: Thompson et al., “The computational limits of deep learning” (July 2020). arXiv:2007.05558v1

~ Accuracy ~ Ops (~ time)

Oracle

Oracle

More samples → More accuracy, reasonable time

# samples ~ accuracy

https://arxiv.org/abs/2007.05558v1


puted using the true 1000-dimensional parameter vector. The prediction MSE is averaged over

query vectors sampled from an isotropic Gaussian distribution.

Figure 1: The effects of model complexity and regularization on model performance (measured
as the negative log10 of normalized mean squared error of the prediction compared to the optimal
predictor) and on computational requirements, averaged over 1000 simulations per case. (a)
Average performance as sample sizes increase. (b) Average computation required to improve
performance.

As figure 1(a) shows, the neural-network analog (the flexible, regularized model) is much

more efficient with data than an unregularized flexible model, but considerably less so than the

oracle model or (initially) the expert model. Nevertheless, as the amount of data grows, the

regularized flexible model outperforms expert models that don’t capture all contributing factors.

This graph generalizes an insight attributed to Andrew Ng: that traditional machine learning

techniques do better when the amount of data is small, but that flexible deep learning models do

better with more data [53]5. We argue that this is a more-general phenomenon of flexible models

having greater potential, but also having vastly greater data and computational needs.6 In our

illustration in figure 1, for example, 1,500 observations are needed for the flexible model to reach
5In fact sufficiently large neural networks are universal function approximators [42], implying maximum

flexibility.
6Another demonstration of this comes from the fact that certain types of deep neural networks can provably be

replaced by Gaussian process models that are also flexible and have the advantage of being less black-box, but scale
their computational needs even more poorly that neural networks [66].

6

S A L I S H A N  2 0 2 329

Linear regression example: Thompson et al., “The computational limits of deep learning” (July 2020). arXiv:2007.05558v1

~ Accuracy ~ Ops (~ time)

Oracle

Oracle

Accuracy plateaus and costs rise

# samples ~ accuracy

Human expert
Human expert

https://arxiv.org/abs/2007.05558v1


puted using the true 1000-dimensional parameter vector. The prediction MSE is averaged over

query vectors sampled from an isotropic Gaussian distribution.

Figure 1: The effects of model complexity and regularization on model performance (measured
as the negative log10 of normalized mean squared error of the prediction compared to the optimal
predictor) and on computational requirements, averaged over 1000 simulations per case. (a)
Average performance as sample sizes increase. (b) Average computation required to improve
performance.

As figure 1(a) shows, the neural-network analog (the flexible, regularized model) is much

more efficient with data than an unregularized flexible model, but considerably less so than the

oracle model or (initially) the expert model. Nevertheless, as the amount of data grows, the

regularized flexible model outperforms expert models that don’t capture all contributing factors.

This graph generalizes an insight attributed to Andrew Ng: that traditional machine learning

techniques do better when the amount of data is small, but that flexible deep learning models do

better with more data [53]5. We argue that this is a more-general phenomenon of flexible models

having greater potential, but also having vastly greater data and computational needs.6 In our

illustration in figure 1, for example, 1,500 observations are needed for the flexible model to reach
5In fact sufficiently large neural networks are universal function approximators [42], implying maximum

flexibility.
6Another demonstration of this comes from the fact that certain types of deep neural networks can provably be

replaced by Gaussian process models that are also flexible and have the advantage of being less black-box, but scale
their computational needs even more poorly that neural networks [66].

6

S A L I S H A N  2 0 2 329

Linear regression example: Thompson et al., “The computational limits of deep learning” (July 2020). arXiv:2007.05558v1

~ Accuracy ~ Ops (~ time)

Overparameterized

Overparameterized

Oracle

Oracle

With enough data, more accuracy but a high cost

# samples ~ accuracy

Human expert
Human expert

https://arxiv.org/abs/2007.05558v1


puted using the true 1000-dimensional parameter vector. The prediction MSE is averaged over

query vectors sampled from an isotropic Gaussian distribution.

Figure 1: The effects of model complexity and regularization on model performance (measured
as the negative log10 of normalized mean squared error of the prediction compared to the optimal
predictor) and on computational requirements, averaged over 1000 simulations per case. (a)
Average performance as sample sizes increase. (b) Average computation required to improve
performance.

As figure 1(a) shows, the neural-network analog (the flexible, regularized model) is much

more efficient with data than an unregularized flexible model, but considerably less so than the

oracle model or (initially) the expert model. Nevertheless, as the amount of data grows, the

regularized flexible model outperforms expert models that don’t capture all contributing factors.

This graph generalizes an insight attributed to Andrew Ng: that traditional machine learning

techniques do better when the amount of data is small, but that flexible deep learning models do

better with more data [53]5. We argue that this is a more-general phenomenon of flexible models

having greater potential, but also having vastly greater data and computational needs.6 In our

illustration in figure 1, for example, 1,500 observations are needed for the flexible model to reach
5In fact sufficiently large neural networks are universal function approximators [42], implying maximum

flexibility.
6Another demonstration of this comes from the fact that certain types of deep neural networks can provably be

replaced by Gaussian process models that are also flexible and have the advantage of being less black-box, but scale
their computational needs even more poorly that neural networks [66].

6

S A L I S H A N  2 0 2 329

Linear regression example: Thompson et al., “The computational limits of deep learning” (July 2020). arXiv:2007.05558v1

~ Accuracy ~ Ops (~ time)

Overparameterized

Overparameterized

+ Regularization
+ RegularizationOracle

Oracle

Better accuracy with fewer samples, but still expensive

# samples ~ accuracy

Human expert
Human expert

https://arxiv.org/abs/2007.05558v1


Chunxing Yin (GT Ph.D.), D. Zheng (Amazon), I. Nisrat, C. Faloutsos, G. Karypis, R. Vuduc.

“Nimble GNN embedding with tensor-train decomposition.” In KDD’22. doi:10.1145/3534678.3539423

https://doi.org/10.1145/3534678.3539423


Baseline:

Big models

Chunxing Yin (GT Ph.D.), D. Zheng, et al.

“Nimble GNN embedding with tensor-train decomposition.” In KDD’22. doi:10.1145/3534678.3539423

https://doi.org/10.1145/3534678.3539423


Tensor-train reparameterization:

Comparable accuracy

with less space & time

Chunxing Yin (GT Ph.D.), D. Zheng, et al.

“Nimble GNN embedding with tensor-train decomposition.” In KDD’22. doi:10.1145/3534678.3539423

https://doi.org/10.1145/3534678.3539423


Tensor-train reparameterization:

Comparable accuracy


with a time-space tradeoff

Chunxing Yin (GT Ph.D.), D. Zheng, et al.

“Nimble GNN embedding with tensor-train decomposition.” In KDD’22. doi:10.1145/3534678.3539423

https://doi.org/10.1145/3534678.3539423


CS267 Poisson - 1.11 Demmel Fall 2002

Algorithms for 2D Poisson Equation with N unknowns
Algorithm Serial PRAM Memory #Procs
° Dense LU N3 N N2 N2

° Band LU N2 N N3/2 N
° Jacobi N2 N N N
° Explicit Inv. N log N N N
° Conj.Grad. N 3/2 N 1/2 *log N N N

° RB SOR N 3/2 N 1/2 N N
° Sparse LU N 3/2 N 1/2 N*log N N
° FFT N*log N log N N N
° Multigrid N log2 N N N

° Lower bound N log N N

PRAM is an idealized parallel model with zero cost communication

2 22

(Keyes ’04)

1947

1950

1971

1984

~ 1970s

https://sites.google.com/lbl.gov/cs267-spr2023

https://sites.google.com/lbl.gov/cs267-spr2023


Q: What system will the cloud provide?

Q: What is an optimal GPU machine for DL?

A: Add slow memory, “modest” networks


Q: Are we overfitting?

Q: Is the cloud for everyone, e.g., HPC people?

A: Sure, why not?
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An Iron Law of Parallel and 
Distributed Computation

A modern cluster or supercomputer is, to 
first order, a collection of processing nodes. 
Each node has a processor (“xPU”) and a 
two-level memory hierarchy. Nodes are 
connected by a network.


As a program executes on this system, it 
incurs two types of communication cost. 


“Vertical” communication occurs in the 
memory system between, say, RAM and 
cache.


“Horizontal” communication occurs between 
nodes across the network.

xPU

Memory

xPU

Memory

xPU

Memory

xPU

Memory

xPU

Memory

xPU

Memory

xPU

Memory

xPU

Memory

xPU

Memory

$ $ $

$ $ $

$ $ $

Two costs: Tnetwork + Tmemory
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An Iron Law of Parallel and 
Distributed Computation

A modern cluster or supercomputer is, to 
first order, a collection of processing nodes. 
Each node has a processor (“xPU”) and a 
two-level memory hierarchy. Nodes are 
connected by a network.


As a program executes on this system, it 
incurs two types of communication cost.


“Vertical” communication occurs in the 
memory system between, say, RAM and 
cache.


“Horizontal” communication occurs between 
nodes across the network.

xPU

Memory

xPU

Memory

xPU

Memory

xPU

Memory

xPU

Memory

xPU

Memory

xPU

Memory

xPU

Memory

xPU

Memory

$ $ $

$ $ $

$ $ $

Two costs: Tnetwork + Tmemory



S A L I S H A N  2 0 2 3

E M B R A C E  C O M M U N I C AT I O N

38

An Iron Law of Parallel and 
Distributed Computation

A modern cluster or supercomputer is, to 
first order, a collection of processing nodes. 
Each node has a processor (“xPU”) and a 
two-level memory hierarchy. Nodes are 
connected by a network.


As a program executes on this system, it 
incurs two types of communication cost.


“Vertical” communication occurs in the 
memory system between, say, RAM and 
cache.


“Horizontal” communication occurs 
between nodes across the network.

Two costs: Tnetwork + Tmemory
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DPUs in modern 
clusters

The basic building block of a distributed-
memory cluster or supercomputer is a node.


Each node includes a host, which is a 
processor (xPU) + memory hierarchy.


The host can communicate with other hosts 
via its NIC (network interface controller).


A network connects the nodes. The nodes 
may be arranged in some topology, which 
determines the network’s carrying capacity 
and cost.


In a smartNIC, the NIC becomes “host-like” 
via the addition of processing (ypu) and 
memory. 

Node
“ S M A R T E R ”  N I C S  F O R  F A S T E R  M O L E C U L A R  D Y N A M I C S :  A  C A S E  S T U D Y

Network

Mem

xPU

$
ypu

mem

$

Host
!NIC

Sara Karamati
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Hypothetical: Multi-SmartNIC

Mem

xPU

$

mem

$

Host

BlueField-2

ypu

One host xPU (16 cores)

S. Karamati (GT), J. Young, R.V., et al. (2016) — “Smarter NICs for faster molecular dynamics: a case study.” doi:10.1109/IPDPS53621.2022.00063

https://doi.org/10.1109/IPDPS53621.2022.00063


K A R A M AT I  E T  A L . ,  I P D P S ’ 2 2

“ S M A R T E R ”  N I C S  F O R  F A S T E R  M O L E C U L A R  D Y N A M I C S :  A  C A S E  S T U D Y

49

Hypothetical: Multi-SmartNIC
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Hypothetical: Multi-SmartNIC
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Figure 24: Hardware configurations for the hypothetical machines. The subplots
break down the power and die area resource allocations.
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Figure 25: Relative execution times for the hypothetical machines. The subplots
show execution time relative to the ieal FFT, Stencil, and MatMult configurations.

optimally tuned for the corresponding algorithm, though recall that the model is for a

general-purpose system. Figure 24 shows how resources are allocated in each of these

tuned configurations, as well as in the proposed Echelon configuration. Figure 25

shows execution times for each of the hypothetical machines on the 3D FFT, stencil,

and matrix multiply workloads. We can make a number of observations about these
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7.5% memory bandwidth

60.9% compute
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break down the power and die area resource allocations.
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optimally tuned for the corresponding algorithm, though recall that the model is for a

general-purpose system. Figure 24 shows how resources are allocated in each of these

tuned configurations, as well as in the proposed Echelon configuration. Figure 25

shows execution times for each of the hypothetical machines on the 3D FFT, stencil,

and matrix multiply workloads. We can make a number of observations about these
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67.0% GPU compute

14.9% CPU compute
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P.S.: Rmax / Rpeak ~ 75%
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Power allocation for an “optimal” 3D FFT machine?
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break down the power and die area resource allocations.
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optimally tuned for the corresponding algorithm, though recall that the model is for a

general-purpose system. Figure 24 shows how resources are allocated in each of these

tuned configurations, as well as in the proposed Echelon configuration. Figure 25

shows execution times for each of the hypothetical machines on the 3D FFT, stencil,

and matrix multiply workloads. We can make a number of observations about these
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Figure 24: Hardware configurations for the hypothetical machines. The subplots
break down the power and die area resource allocations.
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optimally tuned for the corresponding algorithm, though recall that the model is for a

general-purpose system. Figure 24 shows how resources are allocated in each of these

tuned configurations, as well as in the proposed Echelon configuration. Figure 25

shows execution times for each of the hypothetical machines on the 3D FFT, stencil,

and matrix multiply workloads. We can make a number of observations about these
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break down the power and die area resource allocations.
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optimally tuned for the corresponding algorithm, though recall that the model is for a

general-purpose system. Figure 24 shows how resources are allocated in each of these

tuned configurations, as well as in the proposed Echelon configuration. Figure 25

shows execution times for each of the hypothetical machines on the 3D FFT, stencil,

and matrix multiply workloads. We can make a number of observations about these

86

6.4% network
4.7% node overhead


1.6% on-chip network

68.4% mem bw

18.9% compute



hpcgarage.org/tacc20

62

1x

36x

11x

31x

1x

9x

55x

3x
1x

3D FFT Machine Matrix Multiply Machine Stencils Machine

fft mm sten fft mm sten fft mm sten
0

20

40

Operation

Relative time (slowdown)

http://hpcgarage.org/tacc20


hpcgarage.org/tacc20

62

1x

36x

11x

31x

1x

9x

55x

3x
1x

3D FFT Machine Matrix Multiply Machine Stencils Machine

fft mm sten fft mm sten fft mm sten
0

20

40

Operation

Relative time (slowdown)

http://hpcgarage.org/tacc20


hpcgarage.org/tacc20

62

1x

36x

11x

31x

1x

9x

55x

3x
1x

3D FFT Machine Matrix Multiply Machine Stencils Machine

fft mm sten fft mm sten fft mm sten
0

20

40

Operation

Relative time (slowdown)

http://hpcgarage.org/tacc20


Intelligence Advanced Research Projects Activity

Creating Advantage through Research and Technology

INTELLIGENCE VALUE 

The AGILE program seeks 
innovative, energy-efficient, and 
reliable computer architectures 
that can address the Intelligence 
Community’s large-scale data-
analytic applications, as well as 
other classes of data intensive 
applications. AGILE offers the 
potential to enable a predictive 
analysis of massive data from 
diverse sources and methods, 
not just forensic analysis after the 
event has occurred.

www.iarpa.gov

of the applications. AGILE system 
designs must emphasize optimization 
of the fully integrated system rather 
than independent optimization of 
individual functionalities (e.g., memory, 
computation, or communication), and 
must not be constrained by existing 
component interfaces and protocols, 
legacy architectures, or current 
practices. 

A fundamental rethinking of computer 
architectures that can revitalize 
performance growth trends in computing 
capabilities is long overdue.  Currently, 
there is a renewed interest in developing 
specialized hardware components.  
However, this approach will not resolve 
the fundamental data movement 
challenges that restrict the historical 
performance growth trends.  The AGILE 
program will seed a new generation 
of computers with unprecedented 
pathways for continuing performance 
gains for the IC.

The AGILE BAA was released in 
November 2021 and the program is 
slated to run for three years.

TESTING AND EVALUATION 

PARTNERS
• Lawrence Berkeley National 

Laboratory
• Sandia National Laboratory
• Pacific Northwest National 

Laboratory

KEYWORDS
• Computer Architecture
• Data analytics
• Co-Design
• Data movement
• Modeling and simulation

The fundamental problem with current 
computer architectures is their 
inefficiency at operating on sparse, 
time-varying data that is randomly 
distributed across the system. The AGILE 
program seeks to solve this problem by 
developing new system-level intelligent 
mechanisms for accessing, moving, 
and storing complex data streams and 
structures that enable efficient data-
analytic algorithms.

New architectures developed under 
the AGILE program will be driven 
by representative data-intensive 
applications through the co-design 
process. Co-design is a process 
for designing computer systems 
whereby the application requirements 
influence architecture decisions, and 
the architecture affects the design 

@IARPAnews

 Latest Revision: 06/13/2022

Schematic of the AGILE Co-Design Process

AGILE
ADVANCED GRAPHIC 
INTELLIGENCE LOGICAL 
COMPUTING ENVIRONMENT

PROGRAM MANAGER 
Bill Harrod, Ph.D. 

Phone: (301) 243-1814 

william.harrod@iarpa.gov

Intelligence Advanced Research Projects Activity

Creating Advantage through Research and Technology

INTELLIGENCE VALUE 

The AGILE program seeks 
innovative, energy-efficient, and 
reliable computer architectures 
that can address the Intelligence 
Community’s large-scale data-
analytic applications, as well as 
other classes of data intensive 
applications. AGILE offers the 
potential to enable a predictive 
analysis of massive data from 
diverse sources and methods, 
not just forensic analysis after the 
event has occurred.

www.iarpa.gov

of the applications. AGILE system 
designs must emphasize optimization 
of the fully integrated system rather 
than independent optimization of 
individual functionalities (e.g., memory, 
computation, or communication), and 
must not be constrained by existing 
component interfaces and protocols, 
legacy architectures, or current 
practices. 

A fundamental rethinking of computer 
architectures that can revitalize 
performance growth trends in computing 
capabilities is long overdue.  Currently, 
there is a renewed interest in developing 
specialized hardware components.  
However, this approach will not resolve 
the fundamental data movement 
challenges that restrict the historical 
performance growth trends.  The AGILE 
program will seed a new generation 
of computers with unprecedented 
pathways for continuing performance 
gains for the IC.

The AGILE BAA was released in 
November 2021 and the program is 
slated to run for three years.

TESTING AND EVALUATION 

PARTNERS
• Lawrence Berkeley National 

Laboratory
• Sandia National Laboratory
• Pacific Northwest National 

Laboratory

KEYWORDS
• Computer Architecture
• Data analytics
• Co-Design
• Data movement
• Modeling and simulation

The fundamental problem with current 
computer architectures is their 
inefficiency at operating on sparse, 
time-varying data that is randomly 
distributed across the system. The AGILE 
program seeks to solve this problem by 
developing new system-level intelligent 
mechanisms for accessing, moving, 
and storing complex data streams and 
structures that enable efficient data-
analytic algorithms.

New architectures developed under 
the AGILE program will be driven 
by representative data-intensive 
applications through the co-design 
process. Co-design is a process 
for designing computer systems 
whereby the application requirements 
influence architecture decisions, and 
the architecture affects the design 

@IARPAnews

 Latest Revision: 06/13/2022

Schematic of the AGILE Co-Design Process

AGILE
ADVANCED GRAPHIC 
INTELLIGENCE LOGICAL 
COMPUTING ENVIRONMENT

PROGRAM MANAGER 
Bill Harrod, Ph.D. 

Phone: (301) 243-1814 

william.harrod@iarpa.gov

Intelligence Advanced Research Projects Activity

Creating Advantage through Research and Technology

INTELLIGENCE VALUE 

The AGILE program seeks 
innovative, energy-efficient, and 
reliable computer architectures 
that can address the Intelligence 
Community’s large-scale data-
analytic applications, as well as 
other classes of data intensive 
applications. AGILE offers the 
potential to enable a predictive 
analysis of massive data from 
diverse sources and methods, 
not just forensic analysis after the 
event has occurred.

www.iarpa.gov

of the applications. AGILE system 
designs must emphasize optimization 
of the fully integrated system rather 
than independent optimization of 
individual functionalities (e.g., memory, 
computation, or communication), and 
must not be constrained by existing 
component interfaces and protocols, 
legacy architectures, or current 
practices. 

A fundamental rethinking of computer 
architectures that can revitalize 
performance growth trends in computing 
capabilities is long overdue.  Currently, 
there is a renewed interest in developing 
specialized hardware components.  
However, this approach will not resolve 
the fundamental data movement 
challenges that restrict the historical 
performance growth trends.  The AGILE 
program will seed a new generation 
of computers with unprecedented 
pathways for continuing performance 
gains for the IC.

The AGILE BAA was released in 
November 2021 and the program is 
slated to run for three years.

TESTING AND EVALUATION 

PARTNERS
• Lawrence Berkeley National 

Laboratory
• Sandia National Laboratory
• Pacific Northwest National 

Laboratory

KEYWORDS
• Computer Architecture
• Data analytics
• Co-Design
• Data movement
• Modeling and simulation

The fundamental problem with current 
computer architectures is their 
inefficiency at operating on sparse, 
time-varying data that is randomly 
distributed across the system. The AGILE 
program seeks to solve this problem by 
developing new system-level intelligent 
mechanisms for accessing, moving, 
and storing complex data streams and 
structures that enable efficient data-
analytic algorithms.

New architectures developed under 
the AGILE program will be driven 
by representative data-intensive 
applications through the co-design 
process. Co-design is a process 
for designing computer systems 
whereby the application requirements 
influence architecture decisions, and 
the architecture affects the design 
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Schematic of the AGILE Co-Design Process
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